

Bridging Nations: Quantifying the Role of Multilinguals in Communication on Social Media

Julia Mendelsohn

● juliamendelsohn.github.io
▶ @jmendelsohn2
➡ juliame@umich.edu

David Jurgens

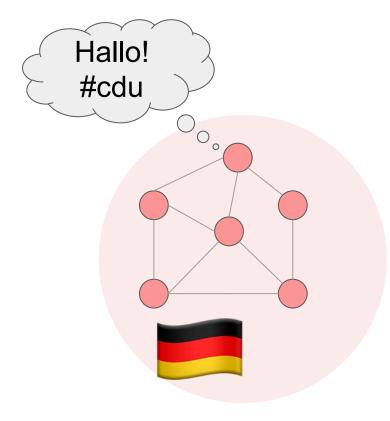
Ceren Budak

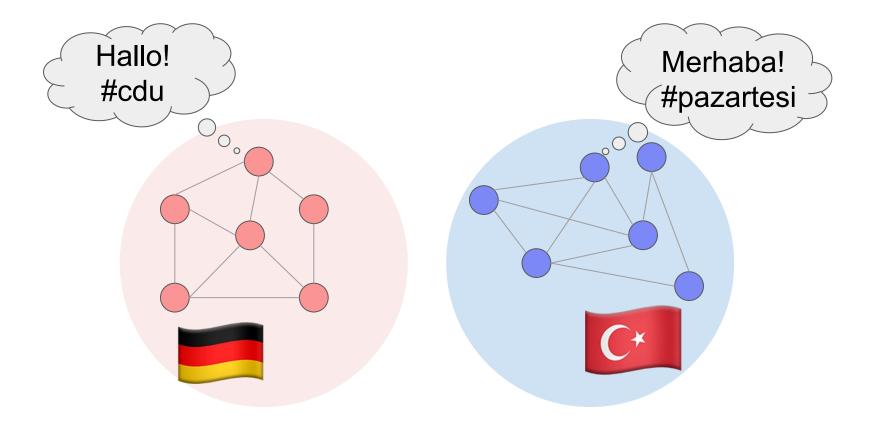
Cbudak.com

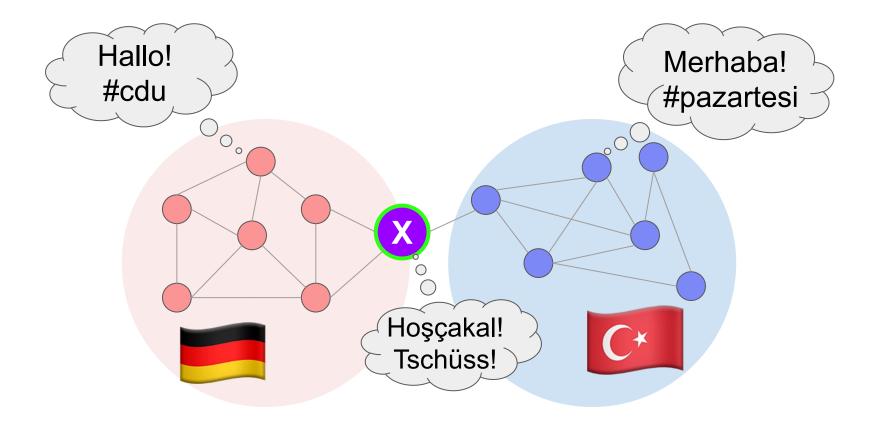
- У @cerenbudak
- 🔀 cbudak@umich.edu

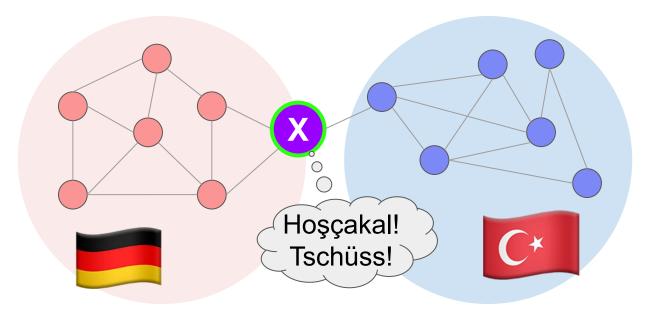
Information shared on social media can spread quickly across the globe, crossing linguistic and national borders.

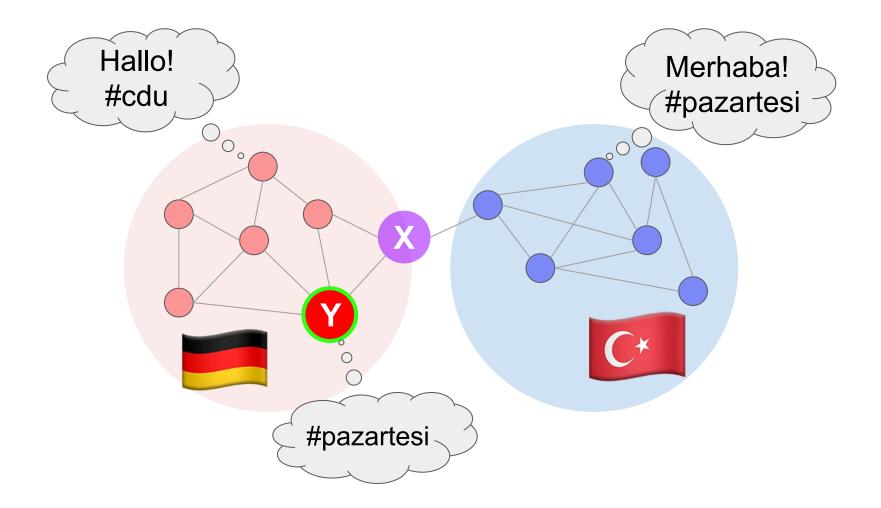
Information shared on social media can spread quickly across the globe, crossing linguistic and national borders.

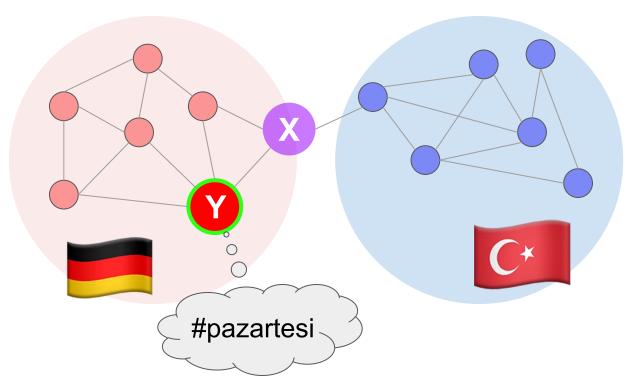


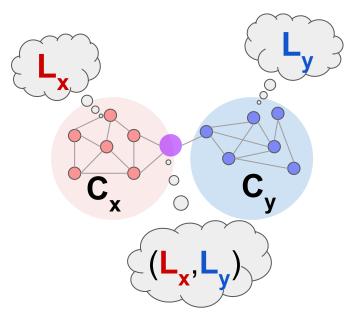


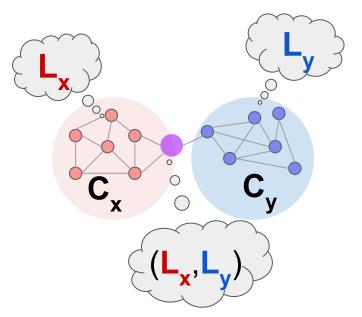

But we don't really know how...

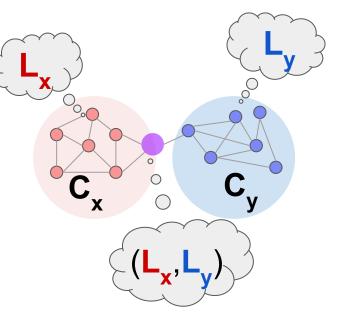


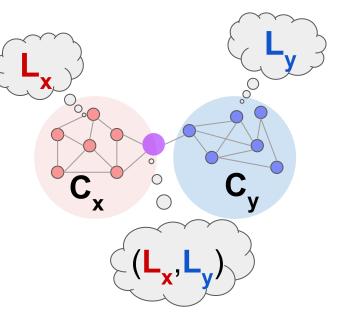

We quantify the **role of multilinguals** in cross-lingual information exchange on European Twitter

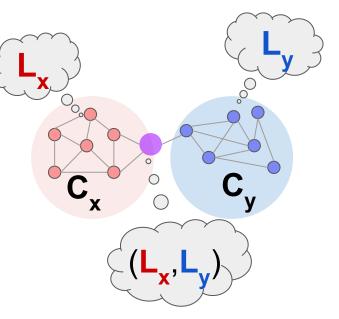







Communication Influence: How does having a multilingual friend impact one's sharing behavior?


• Undirected network of mutual mentions from Decahose


- Undirected network of mutual mentions from Decahose
- Location inference to get nodes and edges from C_x U C_y

- Undirected network of mutual mentions from Decahose
- Location inference to get nodes and edges from C_x U C_y
- **C_x** & **C**_y must have single, distinct dominant languages

- Undirected network of mutual mentions from Decahose
- Location inference to get nodes and edges from C_x U C_y
- **C_x** & **C**_y must have single, distinct dominant languages
- ~250 MCPs from Europe

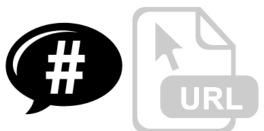
Identifying multilingual Twitter users

• We determine a user's language use based on tweet text using Twitter's LangID

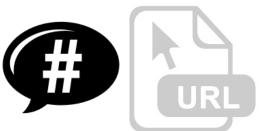
Identifying multilingual Twitter users

- We determine a user's language use based on tweet text using Twitter's LangID
- A multilingual user of L_x and L_y has at least 10% of their tweets in each language

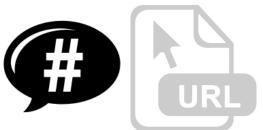
Identifying multilingual Twitter users

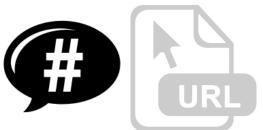

- We determine a user's language use based on tweet text using Twitter's LangID
- A multilingual user of L_x and L_y has at least 10% of their tweets in each language
- This captures language *performances* on Twitter. We know nothing about offline multilingualism

Unit	
Treatment	
Outcome	

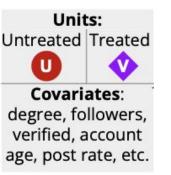

Unit	Users from C_x who post in L_x
Treatment	
Outcome	

Unit	Users from C_x who post in L_x
Treatment	Posting in L _x and L _y
Outcome	

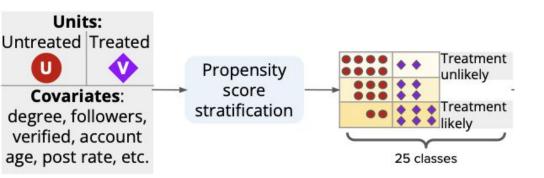

Unit	Users from C_x who post in L_x
Treatment	Posting in L _x and L _y
Outcome	Betweenness centrality (log)


Unit	
Treatment	
Outcome	

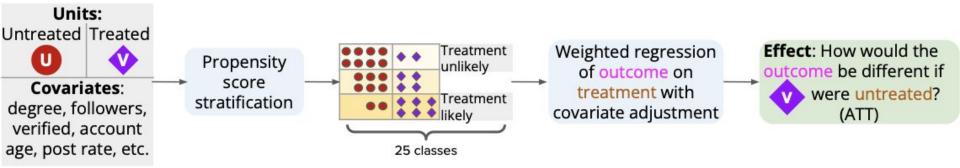
Unit	Monolinguals from C_x who use L_x
Treatment	
Outcome	


Unit	Monolinguals from C_x who use L_x
Treatment	Having a multilingual friend who posts in L _x and L _y
Outcome	

Unit	Monolinguals from C_x who use L_x
Treatment	Having a multilingual friend who posts in L _x and L _y
Outcome	Sharing a hashtag associated with L_y


Causal Inference Design

How would **betweenness centrality** be different in a counterfactual world where a **multilingual** were **monolingual** instead?


Causal Inference Design

How would **betweenness centrality** be different in a counterfactual world where a **multilingual** were **monolingual** instead?

Causal Inference Design

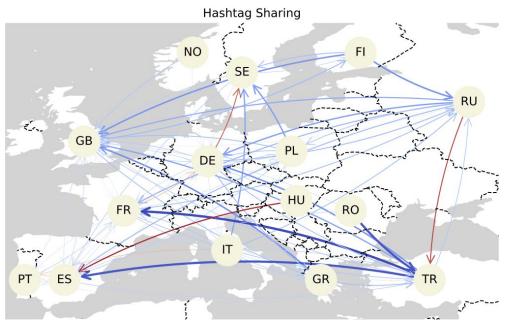
How would **betweenness centrality** be different in a counterfactual world where a **multilingual** were **monolingual** instead?

Multilinguals are important!

For a user in $C_{x'}$ posting in both $L_x \& L_y$ increases:

Multilinguals are important!

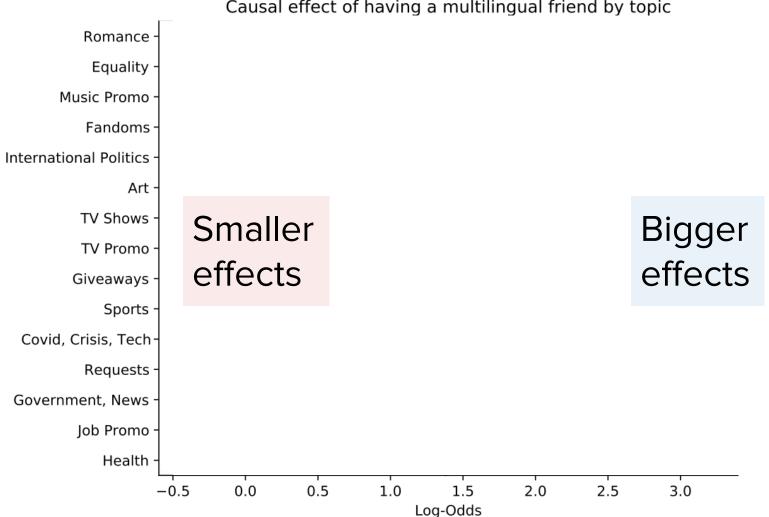
For a user in $C_{x'}$ posting in both $L_x \& L_y$ increases:


• Betweenness centrality by **13.5%**

Multilinguals are important!

For a user in $C_{x'}$ posting in both $L_{x} \& L_{y}$ increases:

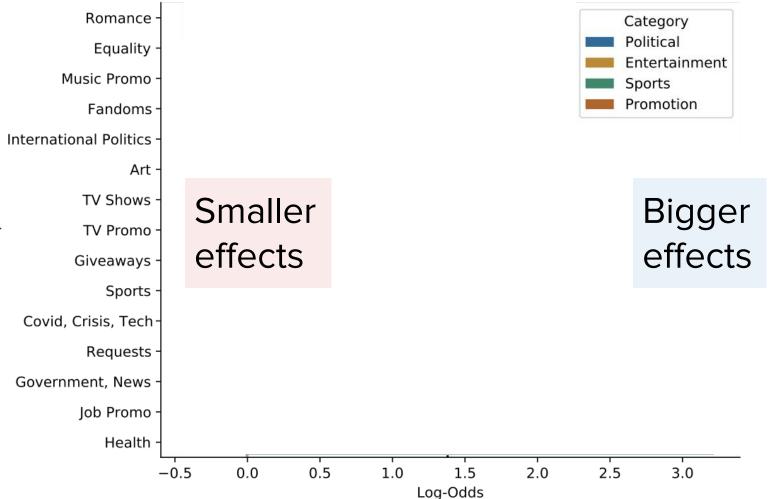
- Betweenness centrality by **13.5%**
- Odds of a L_x friend sharing L_y hashtags 4-fold


But there's a lot of variation across pairs

See paper for analyses of variation across geographic, demographic, political, economic, and linguistic relationships between countries

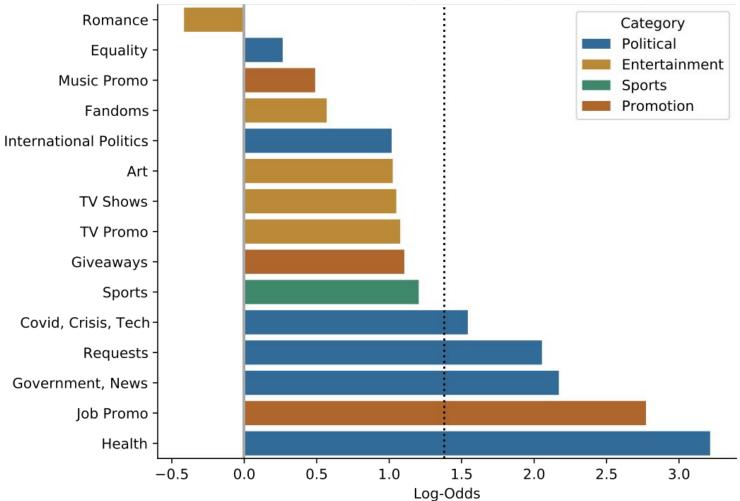
How does the effect of multilinguals varies across **content topic**?

- Multilingual contextualized topic model (CTM) to identify 50 topics [Bianchi et al., 2021]
- Assign hashtags to topic
- Topic-intrusion in 5 languages for evaluation

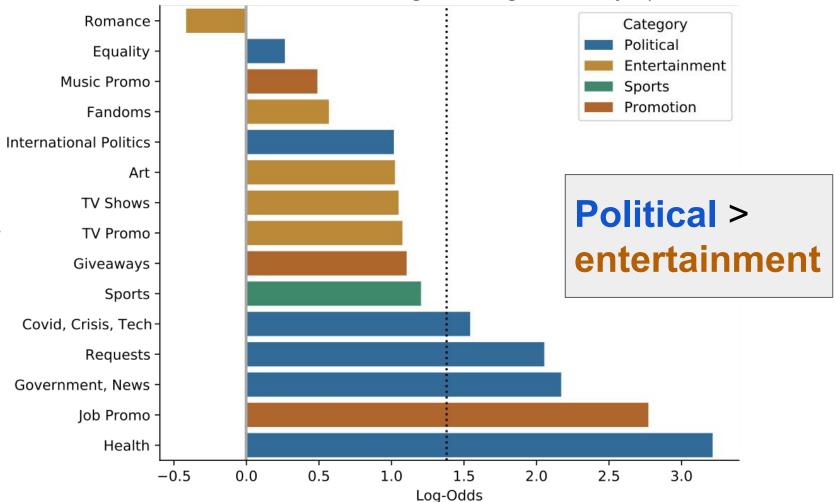


Causal effect of having a multilingual friend by topic

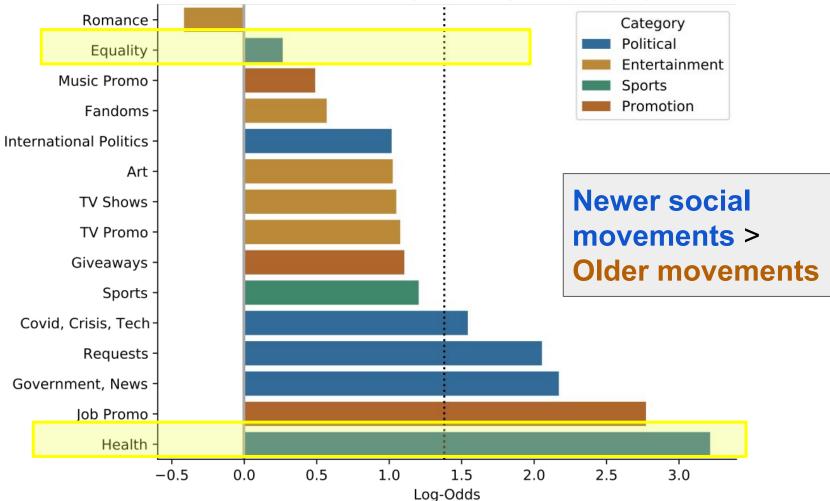
Topic


35

Causal effect of having a multilingual friend by topic



Topic


36

Topic

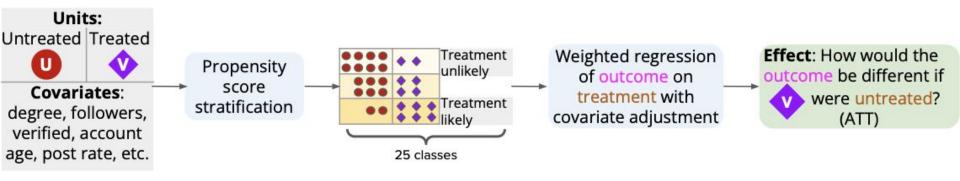
Topic

Topic

40

Topic

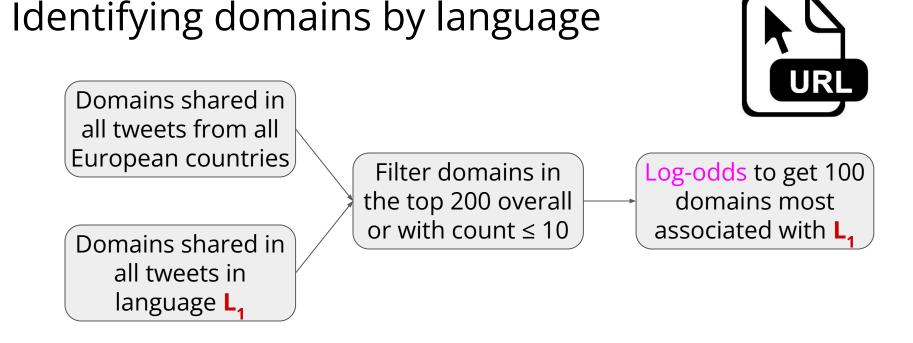
• **Structural role** and **communication influence** of multilinguals in cross-lingual information exchange


- **Structural role** and **communication influence** of multilinguals in cross-lingual information exchange
- Multilinguals play important role overall, with the biggest effects in spreading otherwise less-accessible information

- **Structural role** and **communication influence** of multilinguals in cross-lingual information exchange
- Multilinguals play important role overall, with the biggest effects in spreading otherwise less-accessible information
- Future: nuancing multilingualism, platform implications

- **Structural role** and **communication influence** of multilinguals in cross-lingual information exchange
- Multilinguals play important role overall, with the biggest effects in spreading otherwise less-accessible information
- Future: nuancing multilingualism, platform implications

Thank you! Ευχαριστώ!


Additional Slides

	Study 1	Study 2	Study 3
Units	C_x users posting in L_x	Monolinguals in L_x from C_x	Monolinguals in L_x from C_x
Treatment	Posting multilingually in (L_x, L_y)	$\begin{array}{l} \operatorname{Having} \geq 1\\ (L_x, L_y) \text{ multilingual}\\ \operatorname{neighbor} \end{array}$	$\begin{array}{l} \operatorname{Having} \geq 1\\ (L_x, L_y) \text{ multilingual}\\ \operatorname{neighbor} \end{array}$
Outcome	Betweenness centrality	Sharing domain from L_y	Sharing hashtag from L_y

Table S3: Intercoder agreement (Krippendorff's α) between each pair of LangID models. Bolded values represent the highest agreement score for each column. Twitter's LangID model has the highest average agreement with other models.

Model	Twitter	fastText	langid.py	langdetect	CLD2	CLD3
Twitter	-	0.87	0.84	0.82	0.82	0.77
fastText	0.87	-	0.86	0.80	0.79	0.75
langid.py	0.84	0.86	-	0.79	0.76	0.74
langdetect	0.82	0.80	0.79		0.70	0.70
CLD2	0.82	0.79	0.76	0.70	-	0.71
CLD3	0.77	0.75	0.74	0.70	0.71	-
Mean	0.824	0.814	0.798	0.763	0.760	0.734

• We include retweets to determine top domains/hashtags by language and users' sharing of domains/hashtags

Identifying hashtags by language

Hashtags shared in all tweets from all European countries

Hashtags shared in all tweets in language L₁ Filter hashtags in the top 200 overall or with count ≤ 10 Log-odds to get 100 hashtags most associated with L₁

- Trending hashtags change fast, so top hashtags calculated for 14 day intervals.
- A user shares a hashtag from language L if they share a top
 L hashtag from interval *i* during interval *i* or *i*+1

German	Portuguese	Turkish	Polish	English
cdu	fcporto	çağlarertuğrul	pis	oddoneout
spd	todosportugal	sustunuz	konwencjapis	remain
merkel	capricórnio	pazartesi	topmodel	eastenders
klimaschutz	aquário	cumartesi	thevoiceofpoland	liarjohnson
noafd	sportingcp	burcuözberk	kaczyński	ncfc
tagesschau.de	publico.pt	tele1.com.tr	wpolityce.pl	manchestereveningnews.co.uk
faz.net	record.pt	haber.sol.org.tr	niezalezna.pl	whounfollowedme.org
spiegel.de	maisfutebol.iol.pt	diken.com.tr	dorzeczy.pl	theneweuropean.co.uk

Table S4: Examples of hashtags (from one selected time interval) and domains associated with five different languages.

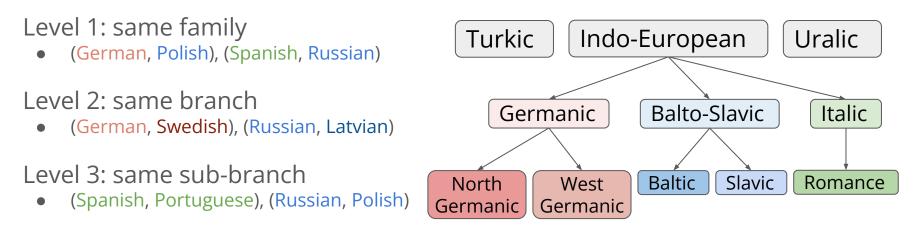
But there's a lot of variation across pairs

	Betweenness Centrality (Study 1)	Domain Sharing (Study 2)	Hashtag Sharing (Study 3)
# Eligible MCPs	214	158	199
# Eligible Loci	317	205	284
% Loci w/ sig. pos ATT	46.37%	56.10%	50.00%
% Loci w/ no sig. ATT	51.42%	40.49%	46.48%
% Loci w/ sig. neg ATT	2.21%	3.41%	3.52%

But there's a lot of variation across pairs

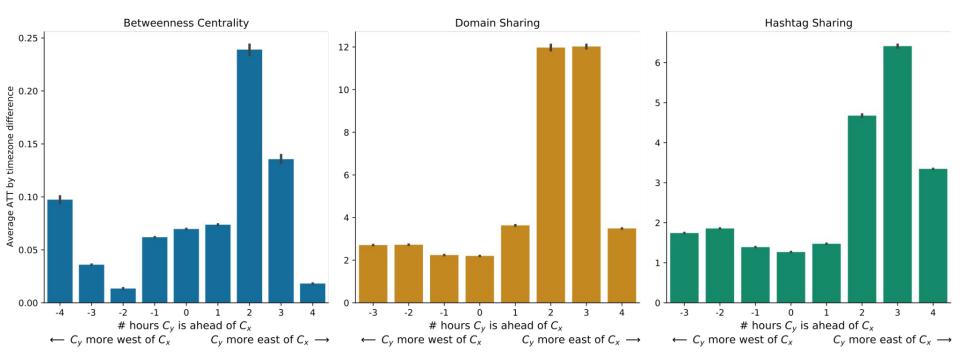
	Betweenness Centrality (Study 1)	Domain Sharing (Study 2)	Hashtag Sharing (Study 3)
# Eligible MCPs	214	158	199
# Eligible Loci	317	205	284
% Loci w/ sig. pos ATT	46.37%	56.10%	50.00%
% Loci w/ no sig. ATT	51.42%	40.49%	46.48%
% Loci w/ sig. neg ATT	2.21%	3.41%	3.52%

Larger effects when C_x and C_y are far apart


	etweenness entrality	Domain Sharing	Hashtag Sharing
Geographic distance Time difference	0.020^{***} 0.015^{**}	$0.434 \\ 0.815^{***}$	0.412*** 0.001
Pop. C_x / C_y % C_y foreign-born % C_y pop. born in C_x % C_x foreign-born % C_x pop. born in C_y	$\begin{array}{r} -0.030^{***}\\ 0.021^{**}\\ 0.017^{**}\\ -0.002\\ 0.007\end{array}$	-0.031 -1.100^{**} -0.044 -0.031 -0.197	$\begin{array}{c} 0.017 \\ -0.058 \\ -0.043 \\ 0.064 \\ -0.040 \end{array}$
GDP per capita C_x / C RTA Tradeflow per capita	$egin{array}{ccc} 0.038^{***} \ 0.010 \ -0.013^{*} \end{array}$	$\begin{array}{c} 0.318 \\ -0.411 \\ 0.425 \end{array}$	$1.171^{***} \\ 0.216^{*} \\ 0.109$
% C_x 's conflicts vs. C_y % C_y 's conflicts vs. C_z		$-0.159 \\ -0.257$	$\begin{array}{c} -0.032\\ 0.088\end{array}$
Linguistic distance	-0.027^{***}	0.449	0.146*
Observations R ²	317 0.266	205 0.193	284 0.448

Western European multilinguals who post in Eastern European languages have an especially big influence

Measuring linguistic closeness


Level 0: no established relationship

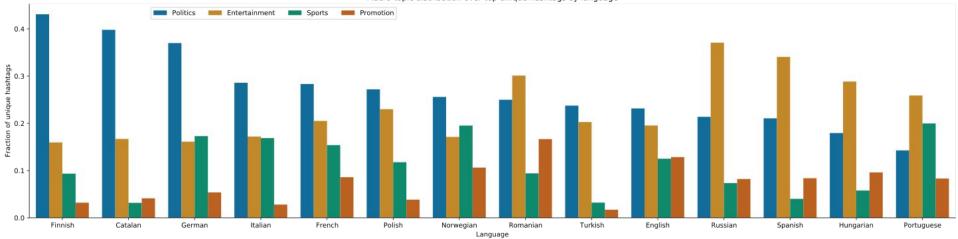
• (German, Turkish), (Spanish, Hungarian)

Does not consider similarities due to language contact (e.g. lexical borrowing)

Time differences and ATT

Identifying topics in cross-lingual diffusion

- Train multilingual contextualized topic model (CTM) to identify 50 topics (Bianchi et al., 2021)
- Assign tweets to the most highly-weighted topic
- Assign hashtags to the most common topic of tweets in which they appear.
- Evaluated with topic-intrusion test in 5 languages
- Re-run hashtag diffusion study for each topic


Hashtag intrusion test evaluation

Language	English	Spanish	German	Turkish	Italian
Accuracy	0.731	0.747	0.813	0.587	0.627
Krippendorff α	0.670	0.682	0.767	0.484	0.536

ID	Description	Example Hashtags
1	TV Shows	skamitalia, masterchefgr, thearchers, ibes
10	Fandoms	jungkook, choicefandom, saveshadowhunters
19	Art	painting, etsy, vintage, fasion, architecture, arte
24	Romance TV	loveisland, poweroflovegr, liebesgschichten
44	TV Promo	comingsoon, luciferonnetflix, skyupnext
3	Job Promo	career, hiring, jobs, startup, sales, jobsearch
16	Giveaways	giveaway, freebiefriday, sorteo, winwin, free
31	Music Promo	radio, youtube, hits, newmusic, magicfm, live
11	Government, News	bbcnews, afd, noafd, labour, parlament, orban
23	Covid, Crisis, Tech	covid19france, koronawirus, polizei, tech, gdpr
30	International Politics	france, syria, venezuela, eeuu, isis, migranti
41	Health	mentalhealth, autism, clapfornhs, discapacidad
46	Requests	stop, shoplocal, stopgiletsjaunes, helpme
47	Equality	metoo, 8demarzo, weltfrauentag, racisme, lgbt
48	Sports	arsenal, halamadrid, futbol, fcporto, rusia2018

Cross-country topical variation

Macro-topic distribution over top unique hashtags by language

The distribution of hashtags in these macro-topics varies substantially across countries, thus presenting a possible confound when considering country pair-level effects.