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INTRODUCTION
For decades, the promise of computers that communicate 
with us through natural language has been depicted in works 
of science fiction and driven research agendas in artificial 
intelligence (AI) and human-computer interaction (HCI). 
As early as 1964, Joseph Weizenbaum demonstrated how 
a computer program could hold open-ended conversations 
using a large set of pattern matching rules [46]. Terry Wino-
grad later developed a more sophisticated program that could 
act upon natural language requests within a simplified blocks 
world [47]. In recent years, researchers have begun to apply 
these assistants to more complex tasks, such as data visual-
ization workflows [41, 19].
Speak to today’s agents as you would to a colleague or friend 
student, however, and it becomes clear that they have many 
limitations. In particular, agents are typically oriented to-
wards executing standalone commands rather than complex 
conversation. Modern NLP techniques such as semantic pars-
ing [45] and LSTMs [4] can decompose complex requests 
such as “run a t-test on the log-transform of x and y” into 
function composition over several independent commands. 
However, these techniques require large amounts of training 
data, making bootstrapping a new domain or command a dif-
ficult task that worsens combinatorially with the number of 
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Figure 1: Iris allows users to combine commands through nested conversations to accomplish open-ended data science tasks. (1) Users interact with 
Iris through natural language requests and (2) the system responds with real-time feedback on the command the request will trigger. Once a com-
mand is triggered, Iris (3) converses with users to resolve arguments. When resolving arguments, users can (1) initiate a nested conversation via a new 
command, or (4) reference the result of  previous conversation.
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ABSTRACT
Today, most conversational agents are limited to simple 
tasks supported by standalone commands, such as getting 
directions or scheduling an appointment. To support more 
complex tasks, agents must be able to generalize from and 
combine the commands they already understand. This paper 
presents a new approach to designing conversational agents 
inspired by linguistic theory, where agents can execute com-
plex requests interactively by combining commands through 
nested conversations. We demonstrate this approach in Iris, 
an agent that can perform open-ended data science tasks 
such as lexical analysis and predictive modeling. To power 
Iris, we have created a domain-specific language that trans-
forms Python functions into combinable automata and reg-
ulates their combinations through a type system. Running a 
user study to examine the strengths and limitations of our 
approach, we find that data scientists completed a modeling 
task 2.6 times faster with Iris than with Jupyter Notebook. 
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combinable commands. As a result, commanding a modern 
conversational agent to run a t-test on the log transform of 
two variables is more likely than not to result in a response 
like “I don’t know what you mean”.
Linguistic theory suggests a complementary path towards 
conversational agents that support greater complexity. In 
daily life, people often build meaning through combinations 
of speech acts [16, 28]. Instead of asking an graduate stu-
dent, “can you run a t-test on the log-transform of x and y”, 
we might make the same request in stages via a nested con-
versation. For example, first we might ask, “can you run a 
t-test?” and when the student replies, “on what?”, we can 
then clarify, “on the log-transform of x and y”. This enables 
the same kind of command composition as a state-of-the-art 
NLP (and more expressivity than today’s commercial agents 
such as Siri), but in a form that requires less training data 
and is more robust to errors. This is possible because instead 
of inferring an entire parse tree from a single statement, the 
agent only needs to correctly classify and execute each step 
of the conversation. The resulting conversation data and 
parse tree can then be used to train more advanced models.
We leverage this insight—that humans build meaning from 
combinations of atomic speech acts—to create a system that 
can nest and combine commands with far less training effort 
than modern deep learning systems. We draw on techniques 
from functional programming, such as first-order and partial 
functions, to create a domain-specific language (DSL) for 
authoring commands. Our system transforms Python func-
tions into composable automata and regulates the set of pos-
sible automata compositions through a conversational type 
system. The result is a set of programming abstractions that 
enable an agent to compose one command through the argu-
ment of another via nested conversation, a form of function 
composition, or sequence commands through a referencing 
to some previous conversations, a form of assignment. From 
nearly one hundred atomic commands, our system enables 
thousands of composed commands. 
We showcase this architecture in Iris, a conversational agent 
that helps users with data science tasks (Figure 1). Data sci-
ence is a domain where complex tasks are often executed 
by non-expert programmers; yet these tasks are difficult to 
support with standalone commands [21]. To interact with 
Iris, you type natural language requests into a chat window 
(1.1) and receive real-time feedback on what command your 
request will trigger (1.2). When you enter a command, Iris 
converses with you to resolve its arguments (1.3), which you 
may populate by calling new commands, a form of conver-
sational composition (1.1). You can also use the results of 
previous commands by storing them in named variables or 
referencing previous command results, forms of sequencing 
(1.4). If you are an expert user, Iris exposes an API that al-
lows you to extend it with new commands.
The primary contributions of this paper include:
• An approach that allows agents to combine commands 
through nested conversation, inspired by linguistic theory.
• A DSL for transforming Python functions into composable 
commands that can be leveraged by a conversational agent.

• The Iris system: a conversational agent for data science.

CONVERSATION ANALYSIS THEORY
Linguistic models of human conversation suggest that agents 
can compose commands through nested conversations, as 
opposed to the more challenging task of inferring these com-
positions automatically from a single request. We use con-
versation analysis (CA), a theory that has been influential in 
sociolinguistics and discursive psychology [18, 14], to help 
us explain the human conversational strategies that allow 
agents to compose commands.
CA theory models all conversations through a basic unit 
called an adjacency pair: a pair of statements spoken by two 
conversational participants [18]. These pairs are typed with 
labels such as greeting-greeting or question-answer. More 
complex conversations can be described by joining adjacen-
cy pairs through expansions: In particular, insert expansions 
nest an adjacency pair within a conversation that allows one 
speaker to resolve other issues before continuing, for exam-
ple, asking what time a World Cup game airs before answer-
ing a question about when to schedule a meeting.
Insert expansions are useful to agents because they can make 
conversation more expressive. Today’s agents leverage a 
form of insert expansion called a clarification request [29]. 
Humans use these requests to clarify the meaning of previ-
ous statements. Agents often use them in a similar way, for 
example, asking for or confirming arguments before execu-
tion: “By Elena, did you mean Elena Ferrante?”. 
Unlike today’s agents, Iris supports an insert expansion 
called the dependent question: a nested conversation where 
the meaning of one statement is grounded in a subsequent re-
quest [29]. For example, a request like “Who is going to the 
game tonight?”, might depend a new conversation initiated 
by, “I don’t remember”. Iris supports dependent questions 
through command composition. For example, when running 
a command to compute the mean of some data, Iris might 
ask, “What array would you like to use?”, and a user might 
answer, “I’d like to generate one from the normal distribu-
tion”. After further conversation, the resulting array value 
will be used to compute the mean. 
Finally, the linguistic idea of anaphora describes expres-
sions of language that depend on previous expressions [37]. 
For Iris, anaphoric expressions are values produced by a pre-
vious command that are necessary to the execution of the 
present command, enabling command sequencing. Iris sup-
ports such expressions through named variables and a simple 
model of pronoun co-reference.

TODAY’S CONVERSATIONAL AGENTS
Iris is inspired by many existing conversational agents [17, 
19, 5, 2] and we examine the interactions these agents sup-
port in Table 1. All systems have the ability to execute stand-
alone commands, such as “set a timer” or “generate a random 
number”; extract arguments from a user query, for example, 
parsing the name Oyeyemi from “send Oyeyemi an email”; 
and resolve arguments by asking follow-up questions, for ex-
ample, responding to the request “schedule a meeting” with 
“when would you like to set it?’’
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Table 1: Interactions that today’s conversational agents have been designed to support. Iris 
enables broader support for composition, calling one command within another command, and 
sequencing, using the results of previous commands in a new command.

pressivity inspired by linguistic theory, allowing open-ended 
command combination through a simple statistical model. 
From a system design perspective, Iris also contributes a 
DSL that makes creating command automata as simple as 
writing and annotating a Python function.
Iris belongs to a line of HCI systems that map natural lan-
guage to underlying functionality such as commands, code 
snippets, and APIs. Query-feature graphs provided an early 
foundation for these methods, connecting user requests with 
system commands in an image editing application [12]. Oth-
ers have since extended this approach: for example, using 
word embedding models to connect user vocabulary with 
system keywords [1, 7] or programming syntax [38], and 
statistical language models to predict functions a user wants 
to call [11, 28, 8]. All of these systems solve the vocabulary 
problem [10] through statistical models that map natural lan-
guage to the domain language of a system. While Iris takes 
a similar tack, it extends user requests through conversation, 
allowing users to combine atoms of functionality —through 
composition and sequencing–into complex commands.
Iris also draws on insights from tools designed to help with 
data science tasks [34, 44, 41]. Wrangler, for example, com-
bines spreadsheet visualizations with natural language com-
mand descriptions to help users manipulate data [20]. Iris 
leverages similar natural language descriptions in the hints 
it displays as a user formulates a command. Other tools such 
as Burrito and Variolite are oriented more towards organiz-
ing data science code for reuse [15, 22]. Iris also aims to 
enable reusable code, but contributes a different perspective: 
by wrapping high-level functions in natural language, users 
can redeploy these functions in future conversations.
When designing for natural language interfaces, systems 
must manage the ambiguity of user language. DataTone and 
PixelTone provide guidance here, illustrating how systems 
can surface decisions about ambiguity [13] and constrain 
these decisions by direct manipulation [24] or other modal-
ities [42]. Iris combines these ideas with an understanding 

One important advance of Iris over ex-
isting agents is support for composition 
(i.e., nested conversations). For exam-
ple, when Iris asks you a question, such 
as “what model should I use?” you can 
respond with a request that initiates a 
new conversation such as “make a lo-
gistic regression model”. The result of 
that nested conversation will then pass 
back to the initial request. Other systems 
either do not support these interactions 
[2, 19], or only support them when they 
have been hard-coded into the agent via 
a dialog tree [5]. For example, when Siri 
asks, “What’s the date of your event?”, 
you can respond with some commands 
such as “when do I get back from Austra-
lia?”, but not with others, such as “how 
about on Elena’s birthday?”.
Support for composition enables other 
new interactions that are absent from 
agents today, such as commands that take references to other 
commands as arguments (similar to first-class functions in 
programming languages), or commands that generate new 
commands (similar to partial functions). For example, Iris 
can combine “transform the dataframe” with “square each 
value”, where the second command is captured as an argu-
ment of the first and applied repeatedly over the data. 
Finally, Iris supports the sequencing of any of its commands 
(i.e., anaphora resolution). For example, you might ask Iris 
to “get the petal-length column from data.csv”, then to “take 
the mean of that column’’. A few existing agents support 
such open-ended sequencing [2, 19], but most support these 
interactions only when hard-coded. 
In sum, most of today’s agents support command combina-
tion through hard-coded logic. The enormous training diffi-
culty of machine learning methods that infer command com-
positions automatically put these methods out of reach for 
many applications. By instead allowing a user to combine 
commands through nested conversations, agents can imme-
diately unlock a much more complex set of tasks.

RELATED WORK
Iris is inspired by other dialogue systems that engage with 
complex tasks. Like Iris, these systems often represent com-
mands as automata, and in some cases they allow users to 
combine commands interactively. PLOW and Ava, for ex-
ample, allow users to sequence commands through variable 
assignment for complex tasks such as filling out a form on 
the web [2, 19], but do not support command composition 
through nested conversation. Similarly, Ravenclaw and Siri 
allow users to compose some commands through nested con-
versation, but only if the composition has been pre-defined in 
a logic tree [5]. A related class of methods such as semantic 
parsing or deep LSTMs also enable atomic command com-
position [45]. These methods require large amounts of train-
ing data, however, and do not support back-and-forth dialog 
with a user to clarify arguments or mistaken compositions. 
The key contribution of Iris over prior work is greater ex-
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of how humans resolve ambiguity (e.g., through clarification 
requests [29]) to manage the execution of user commands.
Systems that interact with users through speech have unique 
psychological constraints [36], such as the tendency of users 
to anthropomorphize them [32]. To better design for these 
constraints, other work in HCI has examined how humans 
communicate through theories such as the language/action 
perspective [48] and applied these theories to agents [30, 
43]. Such theories have centered around individual speech 
acts, which describe how language relates to the world [39]. 
Iris expands on this perspective by capturing the interleaving 
of multiple speech acts as described by CA theory [18]. A 
second class of work has turned a practical lens on the chal-
lenges of implementing speech interfaces, providing tools 
for rapid prototyping [23], triggering user queries [49], or 
extending the limits of machine reasoning with a crowd [6, 
25, 26]. We similarly aim to provide a framework that allows 
others to design and bootstrap conversational agents.

SCENARIO
To motivate how combining commands through composi-
tion and sequencing can empower interaction with a conver-
sational agent, we present a scenario in which we use Iris 
to replicate work analyzing linguistic signals of dogmatism 
(intractability of opinion) in social media [10]. For this sce-
nario, Iris is seeded with a large set of statistical commands 
based on the scipy.stats and sklearn libraries, as well as com-
mands that enable text analysis through lexicons [35, 9].
The original study collected dogmatism labels for Reddit 
posts through a crowdsourcing task. The dataset has two col-
umns: post, the text of a post; and score, a dogmatism label 
between 0 (non-dogmatic) and 15 (dogmatic). We begin the 
scenario with the data loaded into the dogmatism_data, a data-
frame indexed on these column names.
Linguistic Analysis of Dogmatism
To discover linguistic features associated with dogmatic 
posts, we first need to divide the posts into two populations: 
dogmatic and non-dogmatic. The original study considered 
posts in the highest quartile (top 25%) as dogmatic and those 
in the lowest quartile (bottom 25%)  as non-dogmatic.
Basic Interactions with Iris
We type “quartiles” into Iris and the hint box fills with com-
pute quartiles for a {dataframe}. We trigger that command 
and Iris asks, “What dataframe do you want to analyze?” The 
hint box fills with “dogmatism_data” because it is a variable 
in the environment that matches the type the command re-
quires. We accept this suggestion, and Iris displays a spread-
sheet view with the columns in the dataframe. We click on 
the “score” column to select it. Iris responds: “Q1 is from 2.0 
to 7.0, Q2 is from 7.0 to 9.0, Q3 is from 9.0 to 12.0, and Q4 
is from 12.0 to 15.0”.
Complex Command Composition
Next we need to select the highest and lowest quartiles of 
posts: those with scores less than 7 (non-dogmatic) and those 
with scores greater than 12 (dogmatic). We type “filter dog-
matism_data” which triggers the command filter {data-

frame} by {column}. Iris outputs a spreadsheet view of the 
data and again asks us to choose a column to filter on. We 

select score, and Iris asks, “How would you like to filter the 
column?”, explaining that we can provide any command that 
takes a single argument and produces a boolean value. We 
say “use less than”, which via composition triggers  {x} less 
than {y}. Iris asks for the first argument (x) of the command, 
and we say “use the column” which triggers yet another 
command, create reference to column variable. Iris then 
asks for the second (y) and we say “7”. Given the nested 
create reference to column variable command, Iris returns 
a partial function ({x} less than 7) that the filter command 
applies to each row of the dataframe, returning rows where 
the selected column is less than 7 (Figure 2).
The interaction above would not be possible in any other 
conversational agent today. First, command composition al-
lows us to call another command within the filter function, 
then partial command application allows us to generate a 
new command dynamically from the less than command. 
Conversational Type System
What if we had made a mistake and passed filter a com-
mand like log base 10 of {x}, which does not return a boolean 
value? In this case, Iris would evaluate the log command on 
the first row of data, returning a floating point number. This 
would fail a dynamic type check because filter requires a 
command that returns the type boolean and not float. Iris 
would then respond, “That filter argument requires a com-

Figure 2: Composition allows Iris to support nested conversations. Here 
a user interacts with Iris to filter a dataframe to select rows where the 
score column is less than 7. Behind the scenes, Iris generates a new com-
mand using partial function generation to filter the data.
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mand that returns true or false, but your command returned 
a float”, and repeat its original request. We could then try 
again, or exit the conversation via “quit”. This type system 
provides a means of sanitizing inputs and composed com-
mands before they are executed.   
Saving and Sequencing Commands
We need to reuse the dataframe we just filtered, so we ask Iris 
to “save that as non_dogmatic_posts”, which triggers save 
{that} as {non_dogmatic_posts}. A new variable named dog-
matic_posts appears in the right side-bar. This interaction is 
possible because Iris can sequence commands, referencing 
the result of the previous command (via the keyword “that”) 
in the current conversation. Through a similar interaction, 
we save posts with scores greater than 12 in dogmatic_posts.
Now we would like to test these dataframes of posts for dif-
ferences in linguistic features. To replicate the original paper, 
we will use LIWC (Linguistic Inquiry and Word Count) [35], 
a popular tool for computational social science supported by 
Iris. LIWC analyzes text for signals across many linguistic 
categories, such as dominance, anger, or sentiment. 
We tell Iris to “run an analysis using LIWC”, which trig-
gers the command liwc analysis on {dataframe}. We type 
“dogmatic_posts” and Iris outputs a spreadsheet view of the 
data ands asks us to choose a column. We select the post 
column, and Iris then runs the analysis and returns a data-
frame indexed on word counts for each of LIWC’s linguistic 
categories. We save these category scores in dogmatic_liwc, 
and then repeat this process for the content of non-dogmatic 
posts and save them in non_dogmatic_liwc.
Learning from User Language
We can now test for linguistic signals that are different be-
tween dogmatic and non-dogmatic posts. We type “run 
Mann-Whitney tests between the columns in dogmatic_liwc 
and non_dogmatic liwc”, which triggers statistical test 

{test} between {dogmatic_liwc} and {non_dogmatic_liwc}.
Iris does not understand which statistical test we want (the 
test argument), so it responds, “Sure, I can run statistical 
tests between two dataframes. What test would you like to 
run?”, along with a set of options that appear in the hint 
pane. We select Mann-Whitney U, and Iris connects this with  
“Mann-Whitney” in the original request, learning a new tem-
plate for this command that it will remember in the future. 
Iris then executes the command to generate a dataframe of 
test statistics, which we save in dogmatism_stats.
Introspecting Iris Commands
The original study corrected these test statistics via the 
Holmes method. Has Iris already done so? We click on the  
statistical test function in the conversation pane to open 
up documentation in the right sidebar, which includes the 
command’s source code and a description of what it does. 
Since we see that the statistics have not been corrected, we 
ask Iris to “apply Holmes correction to dogmatism_stats”. 
After correction, we see dogmatic associations for swearing, 
negative sentiment, and sexual language, and non-dogmatic 
associations for first-person pronouns and past tense. Figure 2: Iris displays a scatter plot for the relationship between sweat-

ing and dogmatism. By default, Iris interacts with users to visualize 
data from a single dataframe, but here we use command composition to 
select a column from a different dataframe for the y-axis data.

Visualizing Data
We would now like to investigate the relationships we just 
uncovered through data visualization. In particular, we can 
examine the relationship between the swearing LIWC cat-
egory and dogmatism ratings through a scatter plot. We 
ask Iris to “make a scatter plot” using the LIWC data we 
already computed. By default the scatter plot command 
will plot a relationship between two columns in the same 
dataframe, but by using command composition, we can ask 
Iris to switch to a different dataframe to select the dogmatism 
score data for the y-axis (Figure 3). From the resulting plot, it 
is clear that while swearing often happens in both dogmatic 
and non-dogmatic posts, posts with high amounts of swear-
ing are far more likely to be rated dogmatic. 
Saving Conversations as Code
Finally, we would like to save our analysis as Python code 
to share with others. When conversing with Iris, the system 
both executes commands and dynamically constructs an ab-
stract syntax tree (AST) behind the scenes that can be used 
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Function composition: Although Iris commands are automa-
ta, they can also be composed much like traditional functions. 
To support this, the states that handle argument requests can 
set their transitions dynamically to point to a new command, 
then loop back with a return value once the new command 
has executed. This functionality enables open-ended com-
mand compositions via nested conversation. This is a novle 
component of Iris, powered by other contributions below.
Memory: To share data between calls to Iris commands (i.e., 
sequencing), and to store data returned by argument requests 
and nested conversations (i.e., composition), automata need 
to read from and write to shared memory. To enable this, 
automata pass a dictionary between state transitions.
Scope: When composing two Iris commands with the same 
argument name, such as x in add {x} {y} and subtract {x} 
{y}, automata need scoping rules that prevent one com-
mand’s argument from overwriting another’s. To enable this, 
scoped commands store data in different namespaces.
Type System: To regulate what kinds of values can be passed 
to an Iris command, and which commands can be composed, 
some automata need type constraints over their transitions. 
This allows Iris to give commands a type signature that it can 
use to gracefully reject inputs at runtime.   
First-class Functions: Some Iris commands take other com-
mands as arguments. For example the command argument in 
filter {dataframe} by {command} requires a command that re-
turns a boolean value when applied to its argument. To enable 
this, automata must be able to read and write other automata 
to and from shared memory. 
Partial Functions: Iris can create new commands from com-
mands it already knows. For example, a command such as 
{x} greater than {y} can be parameterized with arbitrary 
y values to create an infinite number of other single-argu-

ment functions, such as {x} greater 
than 1, {x} greater than 2, and so 
on. These partial functions are use-
ful for filtering or transforming data, 
where you would otherwise need 
to register an intractable number 
of functions with Iris (one for each 
constant value to support). To enable 
this, Iris’s automata support closures 
over argument bindings.
While existing work in conversa-
tional agents supports some of these 
concepts, such as function applica-
tion or memory [2, 19], Iris is the 
first to support many others, such as 
composition, scope, and first-class 
functions. These concepts work to-
gether to allow users to combine 
commands via conversation.
The Structure of Iris Commands
Iris commands are building blocks 
that users can combine to accom-
plish complex tasks. These com-
mands are defined by applying a 

to save or re-run an interaction. We click on “export” in the 
right sidebar, which translates this AST into a standalone Py-
thon file that can be edited and run independently of Iris.

SYSTEM
Iris is a conversational agent that supports open-ended data 
science tasks. In this section, we describe how we built Iris, 
with emphasis on its compositional architecture, conversa-
tional type system, and API for command creation. 
We present an overview of how Iris works in Figure 3. The 
entry point to interactions with Iris is a simple statistical mod-
el that maps user input onto commands. These commands 
require arguments that Iris either extracts through template 
strings or converses with a user to resolve. Users can answer 
an argument request by executing another command via a 
nested conversations (composition) or referencing a previ-
ous conversation (sequencing). This system is focused on 
a new approach to combining atomic commands, not com-
mand classification or argument extraction: other work in 
NLP will continue to improve on these core methods.
A Programming Model for Conversation
Iris draws upon many existing programming abstractions to 
support open-ended command combination. Previous dialog 
systems have used automata, or state machines [48], to model 
conversation. Automata provide useful scaffolding for back-
and-forth interactions with a user, but they are not powerful 
enough to support nested conversations or commands that 
can reference and call other commands. We describe how we 
Iris has augmented traditional automata below:
Function application: Iris commands are functions wrapped 
by automata that interact with a user. For example, when ar-
guments cannot be extracted from a user’s request, automata 
will loop through clarification requests to request them. This 
basic functionality is shared by existing agents [19, 2].

Figure 3: Iris allows users to combine commands by transforming them into automata that it can com-
pose and sequence. Here we depict how these automata fit into the system architecture. Composition 
(short dash) allows comands to be called recursively within each other. Sequencing (long dash) allows 
commands to happen in series, referencing previous command results.
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DSL to Python functions that extends them with 
conversational affordances such as: (1) what user 
requests trigger the function, (2) what types of ar-
guments the function requires, and how Iris should 
interact with a user to resolve them, (3) how Iris can 
extract arguments from example requests, and (4) 
how Iris should communicate the return value to the 
user. In sum, Iris commands are functions annotated 
with conversational metadata.
We present an example Iris command in Figure 4. 
The title field describes how Iris will reference the 
command in conversation. The examples provide ini-
tial grounding for what user requests will trigger the 
command and how to extract arguments. The argu-
ment_types connect arguments with types that dictate 
how Iris should converse with a user to resolve them. 
The explanation function defines how the return val-
ue of a command will be presented to the user. 
Iris commands inherit from a base class (IrisCom-
mand) that transforms them into automata (Figure 3). 
An outermost automaton extracts arguments from a user’s 
request and binds them to a command. This automaton tran-
sitions to another that gathers missing arguments, cycling 
through clarification requests with the user (driven by argu-
ment type). This in turn transitions to an execution automa-
ton that looks up the argument bindings and runs the code.
The Conversational Type System
Iris’s conversational type system provides a framework for 
sanity checking user input and resolving a command’s ar-
guments through conversation. For example, if Iris knows it 
needs an Integer, it can execute conversational logic to col-
lect that value, such as, “What integer would you like to use 
for n?” or reject user input if the user provides a string. 
Types in Iris consist of (1) logic that defines what Python 
values match the type, (2) a means of converting user input 
into a value of the type, such as a function to convert the 
string value “9” into an integer, (3) a clarification request 
that determines how Iris will interact with a user to resolve 
a type, and (4) a set of type converters that can transform 
values of non-matching types into the correct type, such as 
converting a floating point number into an integer.
Iris currently contains types for integers, strings, arrays, 
dataframes (multi-dimensional data with named columns), 
models and metrics (based on the sklearn API), and plots 
(based on the matplotlib API). These types all inherit from 
a base automata class (IrisType), so an expert user can add 
types to Iris without writing state transition logic. For exam-
ple, the type definition for integers is only 8 lines of code.
A Statistical Model of User Requests
Iris connects user language with commands through a multi-
class logistic regression model that is trained to predict com-
mands from user language. Iris bootstraps training based on 
a few examples associated with each command, but as us-
ers enter new requests, the model is updated to incorporate 
them. With more data, it is possible to swap out this classifier 
with something more sophisticated, such as a deep neural 
network [40]. Iris does not contribute over existing NLP 

Figure 4: Implementation of an Iris command from a scipy function. Iris extends 
the function with conversational affordances, such as argument requests (lines 
8-9) and an explanation (lines 14-17). These affordances translate into automata 
powered by the conversational DSL.

work for command classification: the classifier it uses is only 
important to enable the other, novel parts of its architecture.
Executing Requests via Iris Commands
To connect user requests with commands, Iris acts much like 
an interpreter in a traditional programming environment. 
Upon receiving a request, Iris calls its statistical model to 
determine which command the user wants. Iris then executes 
the desired command’s automata, which handle argument 
extraction and clarification requests.
Extracting Arguments from Requests
The automata for argument extraction use an exact match 
procedure that aligns requests word-by-word with a set of 
templates and extracts values from matching words in the 
template so long as they can be converted into the correct 
type. As users enter requests it has not seen, Iris learns new 
templates for executing commands and updates its statistical 
model. When arguments cannot be extracted, these automata 
transition to others that handle clarification requests.
Given its modular architecture, Iris can easily be extended 
to support more advanced models for argument extraction 
(such as LSTMs) once we have more training data. 
Composing Command Execution
Composition allows users to nest commands within each 
other through conversation (Figure 2A). For example, a user 
can compose one command to “transform the post column in 
dogmatism_data” with another to “take the absolute value”. 
To achieve composition, automata that handle clarification 
requests must distinguish between responses that are intend-
ed as primitive values (e.g., an integer, or the name of an 
array value) and those that correspond to new commands. 
These automata first use the conversion methods provided 
by their types to attempt to parse a user response into a value 
of the correct type. If this process fails, the automata will 
process the input as a new, composed command. Iris’s inter-
pretation of an input is transparent to the user and updated in 
real-time as a hint above the text field.
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To compose one command’s automata (the child) with an-
other’s (the parent), the parent initializes the child with a new 
scope to prevent argument bindings from overwriting each 
other —for example, two commands that use the argument 
“x”—passes control of the conversation to the child, and 
adds a state transition from the child to the itself. After the 
child executes and transitions to the parent, the parent binds 
the child’s result to the original argument in question, then 
continues its own execution (Figure 3).
Sequencing Command Execution
Sequencing allows users to reference the value of a previous 
command in their current interaction. To accomplish this, Iris 
saves the result of each command as it executes in a his-
tory variable that can be referred to in future conversations 
through pronoun keywords such as “this”, “those”, or “that”. 
For example, after a command has just returned an array, us-
ers can ask Iris to “take the mean of that”. This simple model 
works well in practice; in the future, it is possible to swap in 
more advanced co-reference models [33].
Iris also provides an internal API that commands can call to 
add new, named variables to the Iris runtime environment. 
We have used this API to create an general purpose com-
mand to save {value} to {variable name}, which can be is-
sued to save conversation results for future use, such as in 
the request, “save that to array result”, and then a follow-up,  
“tell me the variance of array result”.
Transforming Conversations into Programs
Users can export conversations with Iris as a Python script to 
save and replicate their work. To accomplish this, Iris incre-
mentally builds an abstract syntax tree (AST) that represents 
the current state of the conversation. When a user asks to 
export their conversation, Iris uses rules associated with each 
AST node type to compile the AST into a Python program. 
Concretely, Python source code for each relevant command 
is generated at the top of the program, sequenced commands 
are translated as variable assignment, and nested commands 
are translated as function composition (Figure 5C).

The Iris User Interface
Users interact with Iris through a chat window that is aug-
mented with hints and metadata about the current state of 
the system (Figure 1). Users enter requests into an input box 
(1.1) and receive real-time feedback about what command 
their re- quest will execute (1.2), which they can use to re-
formulate the request if necessary. Once a user has entered a 
command, Iris will begin a conversation in the chat window, 
asking questions if it needs information about a command’s 
arguments (1.3). Users can respond to these questions with 
concrete values (for example, “Elena” or “2”), new com-
mands that Iris should execute (1.4) or references to the re-
sults of previous conversations (1.5). The chat window has 
a right sidebar that provides information about the names, 
types, and values of existing environment variables.
Because Iris is designed for data science tasks, it must also 
display non-textual data. In particular, Iris outputs complex 
array and matrix data using numpy’s string formatting tools, 
pretty prints Python objects such as lists and dictionaries, 
and can embed images directly in the chat window.
The Iris user interface is built in JavaScript with React and 
Redux and communicates with a Python backend that runs 
the automata-based logic encoded by the conversational 
DSL. All backend and frontend components of the user in-
terface are open source at http://github.com/Ejhfast/
iris-agent.

EVALUATION
Can Iris help users accomplish data science tasks? What ben-
efits and drawbacks does a conversational interface provide 
over programming? We ran a study to validate Iris’s design, 

Figure 5: Conversations with Iris are programs under composition: (A) 
user conversation with Iris, (B) the abstract syntax tree that Iris builds 
at run-time, and (C) Python code generated by Iris from the AST. 
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and compare it to the high-level data mining API provided by 
the Python package sklearn. Following the study, we asked 
participants about their impressions of the system.
Method
Our study aims to compare Iris to how a data scientist would 
accomplish a predictive modeling task in Python. Study 
participants built and cross-validated a model to predict a 
flower’s species based on measurements of the length and 
width of its petals and sepals [3], then reported on feature 
relationships  by examining model coefficients. The task de-
scription was written by a third party expert who was not 
familiar with the training examples for Iris commands. We 
asked participants to complete the task as quickly as possible 
and measured the time it took them to complete the task as 
well as the correctness of their final output. Finally, we con-
ducted semi-structured interviews, asking participants what 
they liked and disliked about Iris, and following up on any 
problems we noticed as they completed the study. These in-
terviews lasted about ten minutes.
Experimental design: Participants completed the task using 
both sklearn (in a Jupyter notebook) and the Iris conversa-
tional interface, in random order to counterbalance learning 
effects. We chose to compare to sklearn due to the one-to-one 
correspondence between the commands in each tool (many 
Iris commands are built on sklearn).
Participants: eight people participated in the study. All were 
trained computer scientists with past experience in data sci-
ence and sklearn, and none had used Iris prior to the study.
Data format: In the sklearn condition, we presented the flow-
er data as a dictionary (with column names such as “sepal-
length” as the keys). In the Iris condition, we presented these 
data as a dataframe (indexed on the same column names). 
Participants did not need to manipulate the data in either con-
dition, besides selecting features to input to a model.
User instruction: In the sklearn condition, we provided a 
high-level explanation of how the library works, and URLs 
for all the sklearn methods that a participant would need to 
complete the task. We also answered any questions about 
sklearn in the course of the task. In the Iris condition, we 
explained how the interface worked, but we did not provide 
details about the commands that the participant would need, 
or answer questions about the purpose of Iris commands.
Results
Participants completed the task 2.6 times faster on average 
in the Iris condition (Figure 6). This effect was statistically 
significant under a Mann-Whitney U test (U8=3.0, p<0.01). 
There was a small learning effect (participants were 1.31 
times faster on average for the second interface), re-empha-
sizing the importance of our randomization, but the effect 
was not significant (U8=26, p=0.28). All participants com-
pleted the task correctly in both conditions.
Participants approached the modeling task in different ways. 
Some participants worked backwards from a high level goal 
that was several steps in the future. For example, P1 asked 
Iris to “cross-validate” before they had created a model or 
selected features. When Iris then asked, “what model do you 
want to use?”, P1 created it on demand though a nested con-

Figure 6: Study participants completed a data science task 2.6 times 
faster on average with Iris than with sklearn and Jupyter (p < 0.01). 
The y-axis describes time in seconds.

versation (made possible by composition). Other participants 
worked more incrementally. For example, P4 first selected 
features from the flower data and saved them in named vari-
ables, then referenced those variable names in conversation 
when creating a logistic regression model (made possible 
by sequencing). Most participants took a middle ground 
approach that leveraged both kinds of combination: for ex-
ample, composing model creation and data selection, then 
sequencing that with a new request for cross-validation.
Participants also differed in the vocabulary they used to in-
teract with Iris. For example, P1 asked Iris for a “logistic 
regression”, while P3 asked to “build a classifier”, and P2 
asked to “select columns” while P5 asked to “select fea-
tures”. Sometimes users reformulated a request when noth-
ing appropriate appeared in the hint box, as occurred when 
one participant attempted to access a column of data using 
the ’.’ notation common to Python objects.
While three participants interacted with Iris almost entire-
ly through full natural language queries, most interacted via 
keywords, as if they were querying a search engine (for ex-
ample, typing “logistic regression” to trigger create a clas-
sification model). When asked why they chose to converse 
this way, participants said it was faster, as the hint box indi-
cated when keywords would trigger the correct command. 
Notably, keyword searches still allowed participants to build 
complex commands through composition and sequencing. In 
contrast, participants who interacted with Iris through full 
language queries (for example, “cross-validate model1 with 
accuracy and 10 folds”) reported that they wanted Iris to ex-
tract a command’s arguments automatically.
Advantages to Conversation
In interviews following the study, participants mentioned as-
pects of Iris that they liked and disliked. These aspects varied 
to some degree with a user’s level of experience with sk-
learn. For example, less experienced users of sklearn found 
value in the structural guidance provided by conversation 
with Iris (for example, how APIs fit together). P1 said:

“It took a while to remember how to thread together the com-
ponents of the sklearn API. Like, first you need to initiate a 
model instance, then pass that to the cross-validation func-
tion—it wasn’t totally obvious. But with Iris, once it knew I 
wanted to cross-validate, it walked me backwards though the 
steps, like giving it a model, what type of model, and so on.”

In contrast, more experienced users thought Iris would save 
time as a wrapper for a set of functions they frequently call 
in smaller scripts. For example, P4 said:

“For simple scripts, this is so much faster... I really like that 
you don’t have to remember the name of the function you 
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want to call. All you need to do is say something close, like 
‘rename column’ and it can figure out the rest.”

Other participants commented on the complexity of what the 
system could accomplish. For example, P3 said:

“It’s so cool that Iris can do such complex stuff, when legit 
companies out there have nothing this sophisticated.”

Four participants expressed interest in using Iris for future 
data science work. One participant offered to connect us with 
a colleague in the Psychology department who was teaching 
an introductory statistics class as applied through R. “Iris 
would be so much better,” P4 said.
Challenges for Conversation
We also asked participants what they found challenging 
about Iris’s conversational interface. One common view was 
that the expressivity of Iris presented more opportunities for 
mistakes. For example, P2 said:

“It’s great that Iris can combine anything together, but that 
creates more opportunities for something to go wrong.”

Iris’s conversational type system can prevent many common 
user errors, such as combining commands that return incom-
patible types, providing guardrails on user data entry that en-
courage exploration and experimentation [31]. However, as 
the complexity of conversations increased, we noticed that 
participants occasionally got lost when dealing with many 
layers of sub-conversations. Visual cues such as tab indenda-
tion might help add clarity to these interactions.
Similarly, other kinds of mistakes can emerge from miscom-
munication between a system and user about what the sys-
tem is actually doing. Along these lines, some participants 
expressed the concern that a natural language based system 
should be transparent about the operations it is executing, 
especially for data science work. P5 said:

“Say I have some data that’s not normally distributed, and I 
ask Iris to do a t-test. How do I know it’s doing the right one?”

While Iris repeats back the commands it is executing, this 
is not always enough to give users a clear sense of what 
is happening. In response, we have added a feature to Iris 
that allows users to inspect a command’s underlying Python 
code. Iris code is largely written using high level APIs such 
as scikit, so it is possible to quickly inspect the constituent 
functions and determine what methods are being executed.
Other participants mentioned the vocabulary problem as a 
potential challenge. For example, P4 said:

“Everything worked for me, but I can imagine another user 
entering the wrong words and getting stuck.”

The vocabulary problem has long been an issue for systems 
based on natural language. As Iris gains more users and lan-
guage data, we aim to address this problem more formally 
by learning from logs of mistakes [16]. In the course of the 
pilot study, three participants entered requests that triggered 
the wrong command. For example, “make model” triggered 
“create a regression model” instead of “create a classifica-
tion model”; and for two participants, entering the name of a 
column did not resolve to a command to extract that column 
from a dataframe. While these mistakes were foreshadowed 

by text in the system’s hint box, users ignored or misinter-
preted these hints, and future versions of the Iris might em-
phasize them further.
Finally, several participants suggested that text is not always 
the best medium for communicating. For example, P2 said:

“There are certain things, like selecting data columns, that I’d 
prefer to do by clicking on things.”

Prior work has demonstrated strong results with mixed mo-
dality interfaces [24]. Such feedback drove our decision to 
include a spreadsheet view of dataframes in Iris, and we plan 
to incorporate other modalities in the future. Manipulating 
and transforming data, for example, can often be enhanced 
by interactive visualizations, and we plan to explore how 
such visual feedback might augment user conversation.

LIMITATIONS AND FUTURE WORK
Here we discuss challenges to overcome as Iris’s user base 
and range of functionalities grow.
First, as Iris expands to support many more commands, in-
terpreting user language may become more difficult. The 
system currently supports 95 atomic commands with a man-
ually authored dataset of examples (roughly 5 examples per 
command). How accurate will command classification be-
come as the set of commands grows larger? How many user 
examples are necessary to support a new command among 
a library of thousands of others? Addressing these concerns 
will become more important as we deploy Iris in the wild.
Second, Iris creates AST representations of conversations 
with users and so has the ability to save these recorded pro-
grams, which may combine multiple commands. This ability 
connects with work in programming by demonstration  [27], 
and offers the potential for users to create complex, reusable 
workflows through natural language. Saving ASTs for reuse 
presents a usability challenge, however. For example, how 
should Iris ask a user which parameters in the AST are ar-
guments, and which should be captured as constants? And 
is it be possible to mine useful higher-level commands by 
analyzing the ASTs of hundreds or thousands of users? We 
aim to explore these questions as Iris grows.
Finally, Iris enables exploratory and interactive data analy-
ses, as you might conduct today in R or a Jupyter notebook. 
This is distinct from other data science work that requires 
enormous datasets, where training a model may take hours, 
days, or even weeks. To run these models, researchers typi-
cally setup and debug long-running pipelines of commands, 
which is not something Iris is currently designed to do. As 
Iris expands to allow users to create and save workflows 
though PBD, such pipelines may be more feasible to run.

CONCLUSION
In this paper, we show how conversational agents can draw 
on human conversational strategies to combine commands 
together, allowing them to assist us with tasks they have not 
been explicitly programmed to support. We showcase these 
ideas in Iris, an agent designed to help users with data sci-
ence and machine learning tasks. More broadly, our work 
demonstrates how simple models of conversation can lead to 
surprisingly complex emergent outcomes.
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