
ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Natural Lan-
guage

INTRODUCTION
For decades, the promise of computers that communicate
with us through natural language has been depicted in works
of science fiction and driven research agendas in artificial
intelligence (AI) and human-computer interaction (HCI).
As early as 1964, Joseph Weizenbaum demonstrated how
a computer program could hold open-ended conversations
using a large set of pattern matching rules [46]. Terry Wino-
grad later developed a more sophisticated program that could
act upon natural language requests within a simplified blocks
world [47]. In recent years, researchers have begun to apply
these assistants to more complex tasks, such as data visual-
ization workflows [41, 19].
Speak to today’s agents as you would to a colleague or friend
student, however, and it becomes clear that they have many
limitations. In particular, agents are typically oriented to-
wards executing standalone commands rather than complex
conversation. Modern NLP techniques such as semantic pars-
ing [45] and LSTMs [4] can decompose complex requests
such as “run a t-test on the log-transform of x and y” into
function composition over several independent commands.
However, these techniques require large amounts of training
data, making bootstrapping a new domain or command a dif-
ficult task that worsens combinatorially with the number of

Iris: A Conversational Agent for Complex Tasks
Ethan Fast, Binbin Chen, Julia Mendelsohn, Jonathan Bassen, Michael S. Bernstein

Stanford University
{bchen45, jmendels, jbassen}@stanford.edu, {ethan.fast, msb}@cs.stanford.edu

Figure 1: Iris allows users to combine commands through nested conversations to accomplish open-ended data science tasks. (1) Users interact with
Iris through natural language requests and (2) the system responds with real-time feedback on the command the request will trigger. Once a com-
mand is triggered, Iris (3) converses with users to resolve arguments. When resolving arguments, users can (1) initiate a nested conversation via a new
command, or (4) reference the result of previous conversation.

2

3

4

1

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
CHI 2018, April 21–26, 2018, Montreal, QC, Canada
© 2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-5620-6/18/04…$15.00
https://doi.org/10.1145/3173574.3174047

ABSTRACT
Today, most conversational agents are limited to simple
tasks supported by standalone commands, such as getting
directions or scheduling an appointment. To support more
complex tasks, agents must be able to generalize from and
combine the commands they already understand. This paper
presents a new approach to designing conversational agents
inspired by linguistic theory, where agents can execute com-
plex requests interactively by combining commands through
nested conversations. We demonstrate this approach in Iris,
an agent that can perform open-ended data science tasks
such as lexical analysis and predictive modeling. To power
Iris, we have created a domain-specific language that trans-
forms Python functions into combinable automata and reg-
ulates their combinations through a type system. Running a
user study to examine the strengths and limitations of our
approach, we find that data scientists completed a modeling
task 2.6 times faster with Iris than with Jupyter Notebook.
Author Keywords
conversational agents; data science

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 473 Page 1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3173574.3174047&domain=pdf&date_stamp=2018-04-21

combinable commands. As a result, commanding a modern
conversational agent to run a t-test on the log transform of
two variables is more likely than not to result in a response
like “I don’t know what you mean”.
Linguistic theory suggests a complementary path towards
conversational agents that support greater complexity. In
daily life, people often build meaning through combinations
of speech acts [16, 28]. Instead of asking an graduate stu-
dent, “can you run a t-test on the log-transform of x and y”,
we might make the same request in stages via a nested con-
versation. For example, first we might ask, “can you run a
t-test?” and when the student replies, “on what?”, we can
then clarify, “on the log-transform of x and y”. This enables
the same kind of command composition as a state-of-the-art
NLP (and more expressivity than today’s commercial agents
such as Siri), but in a form that requires less training data
and is more robust to errors. This is possible because instead
of inferring an entire parse tree from a single statement, the
agent only needs to correctly classify and execute each step
of the conversation. The resulting conversation data and
parse tree can then be used to train more advanced models.
We leverage this insight—that humans build meaning from
combinations of atomic speech acts—to create a system that
can nest and combine commands with far less training effort
than modern deep learning systems. We draw on techniques
from functional programming, such as first-order and partial
functions, to create a domain-specific language (DSL) for
authoring commands. Our system transforms Python func-
tions into composable automata and regulates the set of pos-
sible automata compositions through a conversational type
system. The result is a set of programming abstractions that
enable an agent to compose one command through the argu-
ment of another via nested conversation, a form of function
composition, or sequence commands through a referencing
to some previous conversations, a form of assignment. From
nearly one hundred atomic commands, our system enables
thousands of composed commands.
We showcase this architecture in Iris, a conversational agent
that helps users with data science tasks (Figure 1). Data sci-
ence is a domain where complex tasks are often executed
by non-expert programmers; yet these tasks are difficult to
support with standalone commands [21]. To interact with
Iris, you type natural language requests into a chat window
(1.1) and receive real-time feedback on what command your
request will trigger (1.2). When you enter a command, Iris
converses with you to resolve its arguments (1.3), which you
may populate by calling new commands, a form of conver-
sational composition (1.1). You can also use the results of
previous commands by storing them in named variables or
referencing previous command results, forms of sequencing
(1.4). If you are an expert user, Iris exposes an API that al-
lows you to extend it with new commands.
The primary contributions of this paper include:
• An approach that allows agents to combine commands
through nested conversation, inspired by linguistic theory.
• A DSL for transforming Python functions into composable
commands that can be leveraged by a conversational agent.

• The Iris system: a conversational agent for data science.

CONVERSATION ANALYSIS THEORY
Linguistic models of human conversation suggest that agents
can compose commands through nested conversations, as
opposed to the more challenging task of inferring these com-
positions automatically from a single request. We use con-
versation analysis (CA), a theory that has been influential in
sociolinguistics and discursive psychology [18, 14], to help
us explain the human conversational strategies that allow
agents to compose commands.
CA theory models all conversations through a basic unit
called an adjacency pair: a pair of statements spoken by two
conversational participants [18]. These pairs are typed with
labels such as greeting-greeting or question-answer. More
complex conversations can be described by joining adjacen-
cy pairs through expansions: In particular, insert expansions
nest an adjacency pair within a conversation that allows one
speaker to resolve other issues before continuing, for exam-
ple, asking what time a World Cup game airs before answer-
ing a question about when to schedule a meeting.
Insert expansions are useful to agents because they can make
conversation more expressive. Today’s agents leverage a
form of insert expansion called a clarification request [29].
Humans use these requests to clarify the meaning of previ-
ous statements. Agents often use them in a similar way, for
example, asking for or confirming arguments before execu-
tion: “By Elena, did you mean Elena Ferrante?”.
Unlike today’s agents, Iris supports an insert expansion
called the dependent question: a nested conversation where
the meaning of one statement is grounded in a subsequent re-
quest [29]. For example, a request like “Who is going to the
game tonight?”, might depend a new conversation initiated
by, “I don’t remember”. Iris supports dependent questions
through command composition. For example, when running
a command to compute the mean of some data, Iris might
ask, “What array would you like to use?”, and a user might
answer, “I’d like to generate one from the normal distribu-
tion”. After further conversation, the resulting array value
will be used to compute the mean.
Finally, the linguistic idea of anaphora describes expres-
sions of language that depend on previous expressions [37].
For Iris, anaphoric expressions are values produced by a pre-
vious command that are necessary to the execution of the
present command, enabling command sequencing. Iris sup-
ports such expressions through named variables and a simple
model of pronoun co-reference.

TODAY’S CONVERSATIONAL AGENTS
Iris is inspired by many existing conversational agents [17,
19, 5, 2] and we examine the interactions these agents sup-
port in Table 1. All systems have the ability to execute stand-
alone commands, such as “set a timer” or “generate a random
number”; extract arguments from a user query, for example,
parsing the name Oyeyemi from “send Oyeyemi an email”;
and resolve arguments by asking follow-up questions, for ex-
ample, responding to the request “schedule a meeting” with
“when would you like to set it?’’

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 473 Page 2

Table 1: Interactions that today’s conversational agents have been designed to support. Iris
enables broader support for composition, calling one command within another command, and
sequencing, using the results of previous commands in a new command.

pressivity inspired by linguistic theory, allowing open-ended
command combination through a simple statistical model.
From a system design perspective, Iris also contributes a
DSL that makes creating command automata as simple as
writing and annotating a Python function.
Iris belongs to a line of HCI systems that map natural lan-
guage to underlying functionality such as commands, code
snippets, and APIs. Query-feature graphs provided an early
foundation for these methods, connecting user requests with
system commands in an image editing application [12]. Oth-
ers have since extended this approach: for example, using
word embedding models to connect user vocabulary with
system keywords [1, 7] or programming syntax [38], and
statistical language models to predict functions a user wants
to call [11, 28, 8]. All of these systems solve the vocabulary
problem [10] through statistical models that map natural lan-
guage to the domain language of a system. While Iris takes
a similar tack, it extends user requests through conversation,
allowing users to combine atoms of functionality —through
composition and sequencing–into complex commands.
Iris also draws on insights from tools designed to help with
data science tasks [34, 44, 41]. Wrangler, for example, com-
bines spreadsheet visualizations with natural language com-
mand descriptions to help users manipulate data [20]. Iris
leverages similar natural language descriptions in the hints
it displays as a user formulates a command. Other tools such
as Burrito and Variolite are oriented more towards organiz-
ing data science code for reuse [15, 22]. Iris also aims to
enable reusable code, but contributes a different perspective:
by wrapping high-level functions in natural language, users
can redeploy these functions in future conversations.
When designing for natural language interfaces, systems
must manage the ambiguity of user language. DataTone and
PixelTone provide guidance here, illustrating how systems
can surface decisions about ambiguity [13] and constrain
these decisions by direct manipulation [24] or other modal-
ities [42]. Iris combines these ideas with an understanding

One important advance of Iris over ex-
isting agents is support for composition
(i.e., nested conversations). For exam-
ple, when Iris asks you a question, such
as “what model should I use?” you can
respond with a request that initiates a
new conversation such as “make a lo-
gistic regression model”. The result of
that nested conversation will then pass
back to the initial request. Other systems
either do not support these interactions
[2, 19], or only support them when they
have been hard-coded into the agent via
a dialog tree [5]. For example, when Siri
asks, “What’s the date of your event?”,
you can respond with some commands
such as “when do I get back from Austra-
lia?”, but not with others, such as “how
about on Elena’s birthday?”.
Support for composition enables other
new interactions that are absent from
agents today, such as commands that take references to other
commands as arguments (similar to first-class functions in
programming languages), or commands that generate new
commands (similar to partial functions). For example, Iris
can combine “transform the dataframe” with “square each
value”, where the second command is captured as an argu-
ment of the first and applied repeatedly over the data.
Finally, Iris supports the sequencing of any of its commands
(i.e., anaphora resolution). For example, you might ask Iris
to “get the petal-length column from data.csv”, then to “take
the mean of that column’’. A few existing agents support
such open-ended sequencing [2, 19], but most support these
interactions only when hard-coded.
In sum, most of today’s agents support command combina-
tion through hard-coded logic. The enormous training diffi-
culty of machine learning methods that infer command com-
positions automatically put these methods out of reach for
many applications. By instead allowing a user to combine
commands through nested conversations, agents can imme-
diately unlock a much more complex set of tasks.

RELATED WORK
Iris is inspired by other dialogue systems that engage with
complex tasks. Like Iris, these systems often represent com-
mands as automata, and in some cases they allow users to
combine commands interactively. PLOW and Ava, for ex-
ample, allow users to sequence commands through variable
assignment for complex tasks such as filling out a form on
the web [2, 19], but do not support command composition
through nested conversation. Similarly, Ravenclaw and Siri
allow users to compose some commands through nested con-
versation, but only if the composition has been pre-defined in
a logic tree [5]. A related class of methods such as semantic
parsing or deep LSTMs also enable atomic command com-
position [45]. These methods require large amounts of train-
ing data, however, and do not support back-and-forth dialog
with a user to clarify arguments or mistaken compositions.
The key contribution of Iris over prior work is greater ex-

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 473 Page 3

of how humans resolve ambiguity (e.g., through clarification
requests [29]) to manage the execution of user commands.
Systems that interact with users through speech have unique
psychological constraints [36], such as the tendency of users
to anthropomorphize them [32]. To better design for these
constraints, other work in HCI has examined how humans
communicate through theories such as the language/action
perspective [48] and applied these theories to agents [30,
43]. Such theories have centered around individual speech
acts, which describe how language relates to the world [39].
Iris expands on this perspective by capturing the interleaving
of multiple speech acts as described by CA theory [18]. A
second class of work has turned a practical lens on the chal-
lenges of implementing speech interfaces, providing tools
for rapid prototyping [23], triggering user queries [49], or
extending the limits of machine reasoning with a crowd [6,
25, 26]. We similarly aim to provide a framework that allows
others to design and bootstrap conversational agents.

SCENARIO
To motivate how combining commands through composi-
tion and sequencing can empower interaction with a conver-
sational agent, we present a scenario in which we use Iris
to replicate work analyzing linguistic signals of dogmatism
(intractability of opinion) in social media [10]. For this sce-
nario, Iris is seeded with a large set of statistical commands
based on the scipy.stats and sklearn libraries, as well as com-
mands that enable text analysis through lexicons [35, 9].
The original study collected dogmatism labels for Reddit
posts through a crowdsourcing task. The dataset has two col-
umns: post, the text of a post; and score, a dogmatism label
between 0 (non-dogmatic) and 15 (dogmatic). We begin the
scenario with the data loaded into the dogmatism_data, a data-
frame indexed on these column names.
Linguistic Analysis of Dogmatism
To discover linguistic features associated with dogmatic
posts, we first need to divide the posts into two populations:
dogmatic and non-dogmatic. The original study considered
posts in the highest quartile (top 25%) as dogmatic and those
in the lowest quartile (bottom 25%) as non-dogmatic.
Basic Interactions with Iris
We type “quartiles” into Iris and the hint box fills with com-
pute quartiles for a {dataframe}. We trigger that command
and Iris asks, “What dataframe do you want to analyze?” The
hint box fills with “dogmatism_data” because it is a variable
in the environment that matches the type the command re-
quires. We accept this suggestion, and Iris displays a spread-
sheet view with the columns in the dataframe. We click on
the “score” column to select it. Iris responds: “Q1 is from 2.0
to 7.0, Q2 is from 7.0 to 9.0, Q3 is from 9.0 to 12.0, and Q4
is from 12.0 to 15.0”.
Complex Command Composition
Next we need to select the highest and lowest quartiles of
posts: those with scores less than 7 (non-dogmatic) and those
with scores greater than 12 (dogmatic). We type “filter dog-
matism_data” which triggers the command filter {data-

frame} by {column}. Iris outputs a spreadsheet view of the
data and again asks us to choose a column to filter on. We

select score, and Iris asks, “How would you like to filter the
column?”, explaining that we can provide any command that
takes a single argument and produces a boolean value. We
say “use less than”, which via composition triggers {x} less
than {y}. Iris asks for the first argument (x) of the command,
and we say “use the column” which triggers yet another
command, create reference to column variable. Iris then
asks for the second (y) and we say “7”. Given the nested
create reference to column variable command, Iris returns
a partial function ({x} less than 7) that the filter command
applies to each row of the dataframe, returning rows where
the selected column is less than 7 (Figure 2).
The interaction above would not be possible in any other
conversational agent today. First, command composition al-
lows us to call another command within the filter function,
then partial command application allows us to generate a
new command dynamically from the less than command.
Conversational Type System
What if we had made a mistake and passed filter a com-
mand like log base 10 of {x}, which does not return a boolean
value? In this case, Iris would evaluate the log command on
the first row of data, returning a floating point number. This
would fail a dynamic type check because filter requires a
command that returns the type boolean and not float. Iris
would then respond, “That filter argument requires a com-

Figure 2: Composition allows Iris to support nested conversations. Here
a user interacts with Iris to filter a dataframe to select rows where the
score column is less than 7. Behind the scenes, Iris generates a new com-
mand using partial function generation to filter the data.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 473 Page 4

mand that returns true or false, but your command returned
a float”, and repeat its original request. We could then try
again, or exit the conversation via “quit”. This type system
provides a means of sanitizing inputs and composed com-
mands before they are executed.
Saving and Sequencing Commands
We need to reuse the dataframe we just filtered, so we ask Iris
to “save that as non_dogmatic_posts”, which triggers save
{that} as {non_dogmatic_posts}. A new variable named dog-
matic_posts appears in the right side-bar. This interaction is
possible because Iris can sequence commands, referencing
the result of the previous command (via the keyword “that”)
in the current conversation. Through a similar interaction,
we save posts with scores greater than 12 in dogmatic_posts.
Now we would like to test these dataframes of posts for dif-
ferences in linguistic features. To replicate the original paper,
we will use LIWC (Linguistic Inquiry and Word Count) [35],
a popular tool for computational social science supported by
Iris. LIWC analyzes text for signals across many linguistic
categories, such as dominance, anger, or sentiment.
We tell Iris to “run an analysis using LIWC”, which trig-
gers the command liwc analysis on {dataframe}. We type
“dogmatic_posts” and Iris outputs a spreadsheet view of the
data ands asks us to choose a column. We select the post
column, and Iris then runs the analysis and returns a data-
frame indexed on word counts for each of LIWC’s linguistic
categories. We save these category scores in dogmatic_liwc,
and then repeat this process for the content of non-dogmatic
posts and save them in non_dogmatic_liwc.
Learning from User Language
We can now test for linguistic signals that are different be-
tween dogmatic and non-dogmatic posts. We type “run
Mann-Whitney tests between the columns in dogmatic_liwc
and non_dogmatic liwc”, which triggers statistical test

{test} between {dogmatic_liwc} and {non_dogmatic_liwc}.
Iris does not understand which statistical test we want (the
test argument), so it responds, “Sure, I can run statistical
tests between two dataframes. What test would you like to
run?”, along with a set of options that appear in the hint
pane. We select Mann-Whitney U, and Iris connects this with
“Mann-Whitney” in the original request, learning a new tem-
plate for this command that it will remember in the future.
Iris then executes the command to generate a dataframe of
test statistics, which we save in dogmatism_stats.
Introspecting Iris Commands
The original study corrected these test statistics via the
Holmes method. Has Iris already done so? We click on the
statistical test function in the conversation pane to open
up documentation in the right sidebar, which includes the
command’s source code and a description of what it does.
Since we see that the statistics have not been corrected, we
ask Iris to “apply Holmes correction to dogmatism_stats”.
After correction, we see dogmatic associations for swearing,
negative sentiment, and sexual language, and non-dogmatic
associations for first-person pronouns and past tense. Figure 2: Iris displays a scatter plot for the relationship between sweat-

ing and dogmatism. By default, Iris interacts with users to visualize
data from a single dataframe, but here we use command composition to
select a column from a different dataframe for the y-axis data.

Visualizing Data
We would now like to investigate the relationships we just
uncovered through data visualization. In particular, we can
examine the relationship between the swearing LIWC cat-
egory and dogmatism ratings through a scatter plot. We
ask Iris to “make a scatter plot” using the LIWC data we
already computed. By default the scatter plot command
will plot a relationship between two columns in the same
dataframe, but by using command composition, we can ask
Iris to switch to a different dataframe to select the dogmatism
score data for the y-axis (Figure 3). From the resulting plot, it
is clear that while swearing often happens in both dogmatic
and non-dogmatic posts, posts with high amounts of swear-
ing are far more likely to be rated dogmatic.
Saving Conversations as Code
Finally, we would like to save our analysis as Python code
to share with others. When conversing with Iris, the system
both executes commands and dynamically constructs an ab-
stract syntax tree (AST) behind the scenes that can be used

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 473 Page 5

Function composition: Although Iris commands are automa-
ta, they can also be composed much like traditional functions.
To support this, the states that handle argument requests can
set their transitions dynamically to point to a new command,
then loop back with a return value once the new command
has executed. This functionality enables open-ended com-
mand compositions via nested conversation. This is a novle
component of Iris, powered by other contributions below.
Memory: To share data between calls to Iris commands (i.e.,
sequencing), and to store data returned by argument requests
and nested conversations (i.e., composition), automata need
to read from and write to shared memory. To enable this,
automata pass a dictionary between state transitions.
Scope: When composing two Iris commands with the same
argument name, such as x in add {x} {y} and subtract {x}
{y}, automata need scoping rules that prevent one com-
mand’s argument from overwriting another’s. To enable this,
scoped commands store data in different namespaces.
Type System: To regulate what kinds of values can be passed
to an Iris command, and which commands can be composed,
some automata need type constraints over their transitions.
This allows Iris to give commands a type signature that it can
use to gracefully reject inputs at runtime.
First-class Functions: Some Iris commands take other com-
mands as arguments. For example the command argument in
filter {dataframe} by {command} requires a command that re-
turns a boolean value when applied to its argument. To enable
this, automata must be able to read and write other automata
to and from shared memory.
Partial Functions: Iris can create new commands from com-
mands it already knows. For example, a command such as
{x} greater than {y} can be parameterized with arbitrary
y values to create an infinite number of other single-argu-

ment functions, such as {x} greater
than 1, {x} greater than 2, and so
on. These partial functions are use-
ful for filtering or transforming data,
where you would otherwise need
to register an intractable number
of functions with Iris (one for each
constant value to support). To enable
this, Iris’s automata support closures
over argument bindings.
While existing work in conversa-
tional agents supports some of these
concepts, such as function applica-
tion or memory [2, 19], Iris is the
first to support many others, such as
composition, scope, and first-class
functions. These concepts work to-
gether to allow users to combine
commands via conversation.
The Structure of Iris Commands
Iris commands are building blocks
that users can combine to accom-
plish complex tasks. These com-
mands are defined by applying a

to save or re-run an interaction. We click on “export” in the
right sidebar, which translates this AST into a standalone Py-
thon file that can be edited and run independently of Iris.

SYSTEM
Iris is a conversational agent that supports open-ended data
science tasks. In this section, we describe how we built Iris,
with emphasis on its compositional architecture, conversa-
tional type system, and API for command creation.
We present an overview of how Iris works in Figure 3. The
entry point to interactions with Iris is a simple statistical mod-
el that maps user input onto commands. These commands
require arguments that Iris either extracts through template
strings or converses with a user to resolve. Users can answer
an argument request by executing another command via a
nested conversations (composition) or referencing a previ-
ous conversation (sequencing). This system is focused on
a new approach to combining atomic commands, not com-
mand classification or argument extraction: other work in
NLP will continue to improve on these core methods.
A Programming Model for Conversation
Iris draws upon many existing programming abstractions to
support open-ended command combination. Previous dialog
systems have used automata, or state machines [48], to model
conversation. Automata provide useful scaffolding for back-
and-forth interactions with a user, but they are not powerful
enough to support nested conversations or commands that
can reference and call other commands. We describe how we
Iris has augmented traditional automata below:
Function application: Iris commands are functions wrapped
by automata that interact with a user. For example, when ar-
guments cannot be extracted from a user’s request, automata
will loop through clarification requests to request them. This
basic functionality is shared by existing agents [19, 2].

Figure 3: Iris allows users to combine commands by transforming them into automata that it can com-
pose and sequence. Here we depict how these automata fit into the system architecture. Composition
(short dash) allows comands to be called recursively within each other. Sequencing (long dash) allows
commands to happen in series, referencing previous command results.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 473 Page 6

DSL to Python functions that extends them with
conversational affordances such as: (1) what user
requests trigger the function, (2) what types of ar-
guments the function requires, and how Iris should
interact with a user to resolve them, (3) how Iris can
extract arguments from example requests, and (4)
how Iris should communicate the return value to the
user. In sum, Iris commands are functions annotated
with conversational metadata.
We present an example Iris command in Figure 4.
The title field describes how Iris will reference the
command in conversation. The examples provide ini-
tial grounding for what user requests will trigger the
command and how to extract arguments. The argu-
ment_types connect arguments with types that dictate
how Iris should converse with a user to resolve them.
The explanation function defines how the return val-
ue of a command will be presented to the user.
Iris commands inherit from a base class (IrisCom-
mand) that transforms them into automata (Figure 3).
An outermost automaton extracts arguments from a user’s
request and binds them to a command. This automaton tran-
sitions to another that gathers missing arguments, cycling
through clarification requests with the user (driven by argu-
ment type). This in turn transitions to an execution automa-
ton that looks up the argument bindings and runs the code.
The Conversational Type System
Iris’s conversational type system provides a framework for
sanity checking user input and resolving a command’s ar-
guments through conversation. For example, if Iris knows it
needs an Integer, it can execute conversational logic to col-
lect that value, such as, “What integer would you like to use
for n?” or reject user input if the user provides a string.
Types in Iris consist of (1) logic that defines what Python
values match the type, (2) a means of converting user input
into a value of the type, such as a function to convert the
string value “9” into an integer, (3) a clarification request
that determines how Iris will interact with a user to resolve
a type, and (4) a set of type converters that can transform
values of non-matching types into the correct type, such as
converting a floating point number into an integer.
Iris currently contains types for integers, strings, arrays,
dataframes (multi-dimensional data with named columns),
models and metrics (based on the sklearn API), and plots
(based on the matplotlib API). These types all inherit from
a base automata class (IrisType), so an expert user can add
types to Iris without writing state transition logic. For exam-
ple, the type definition for integers is only 8 lines of code.
A Statistical Model of User Requests
Iris connects user language with commands through a multi-
class logistic regression model that is trained to predict com-
mands from user language. Iris bootstraps training based on
a few examples associated with each command, but as us-
ers enter new requests, the model is updated to incorporate
them. With more data, it is possible to swap out this classifier
with something more sophisticated, such as a deep neural
network [40]. Iris does not contribute over existing NLP

Figure 4: Implementation of an Iris command from a scipy function. Iris extends
the function with conversational affordances, such as argument requests (lines
8-9) and an explanation (lines 14-17). These affordances translate into automata
powered by the conversational DSL.

work for command classification: the classifier it uses is only
important to enable the other, novel parts of its architecture.
Executing Requests via Iris Commands
To connect user requests with commands, Iris acts much like
an interpreter in a traditional programming environment.
Upon receiving a request, Iris calls its statistical model to
determine which command the user wants. Iris then executes
the desired command’s automata, which handle argument
extraction and clarification requests.
Extracting Arguments from Requests
The automata for argument extraction use an exact match
procedure that aligns requests word-by-word with a set of
templates and extracts values from matching words in the
template so long as they can be converted into the correct
type. As users enter requests it has not seen, Iris learns new
templates for executing commands and updates its statistical
model. When arguments cannot be extracted, these automata
transition to others that handle clarification requests.
Given its modular architecture, Iris can easily be extended
to support more advanced models for argument extraction
(such as LSTMs) once we have more training data.
Composing Command Execution
Composition allows users to nest commands within each
other through conversation (Figure 2A). For example, a user
can compose one command to “transform the post column in
dogmatism_data” with another to “take the absolute value”.
To achieve composition, automata that handle clarification
requests must distinguish between responses that are intend-
ed as primitive values (e.g., an integer, or the name of an
array value) and those that correspond to new commands.
These automata first use the conversion methods provided
by their types to attempt to parse a user response into a value
of the correct type. If this process fails, the automata will
process the input as a new, composed command. Iris’s inter-
pretation of an input is transparent to the user and updated in
real-time as a hint above the text field.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 473 Page 7

To compose one command’s automata (the child) with an-
other’s (the parent), the parent initializes the child with a new
scope to prevent argument bindings from overwriting each
other —for example, two commands that use the argument
“x”—passes control of the conversation to the child, and
adds a state transition from the child to the itself. After the
child executes and transitions to the parent, the parent binds
the child’s result to the original argument in question, then
continues its own execution (Figure 3).
Sequencing Command Execution
Sequencing allows users to reference the value of a previous
command in their current interaction. To accomplish this, Iris
saves the result of each command as it executes in a his-
tory variable that can be referred to in future conversations
through pronoun keywords such as “this”, “those”, or “that”.
For example, after a command has just returned an array, us-
ers can ask Iris to “take the mean of that”. This simple model
works well in practice; in the future, it is possible to swap in
more advanced co-reference models [33].
Iris also provides an internal API that commands can call to
add new, named variables to the Iris runtime environment.
We have used this API to create an general purpose com-
mand to save {value} to {variable name}, which can be is-
sued to save conversation results for future use, such as in
the request, “save that to array result”, and then a follow-up,
“tell me the variance of array result”.
Transforming Conversations into Programs
Users can export conversations with Iris as a Python script to
save and replicate their work. To accomplish this, Iris incre-
mentally builds an abstract syntax tree (AST) that represents
the current state of the conversation. When a user asks to
export their conversation, Iris uses rules associated with each
AST node type to compile the AST into a Python program.
Concretely, Python source code for each relevant command
is generated at the top of the program, sequenced commands
are translated as variable assignment, and nested commands
are translated as function composition (Figure 5C).

The Iris User Interface
Users interact with Iris through a chat window that is aug-
mented with hints and metadata about the current state of
the system (Figure 1). Users enter requests into an input box
(1.1) and receive real-time feedback about what command
their re- quest will execute (1.2), which they can use to re-
formulate the request if necessary. Once a user has entered a
command, Iris will begin a conversation in the chat window,
asking questions if it needs information about a command’s
arguments (1.3). Users can respond to these questions with
concrete values (for example, “Elena” or “2”), new com-
mands that Iris should execute (1.4) or references to the re-
sults of previous conversations (1.5). The chat window has
a right sidebar that provides information about the names,
types, and values of existing environment variables.
Because Iris is designed for data science tasks, it must also
display non-textual data. In particular, Iris outputs complex
array and matrix data using numpy’s string formatting tools,
pretty prints Python objects such as lists and dictionaries,
and can embed images directly in the chat window.
The Iris user interface is built in JavaScript with React and
Redux and communicates with a Python backend that runs
the automata-based logic encoded by the conversational
DSL. All backend and frontend components of the user in-
terface are open source at http://github.com/Ejhfast/
iris-agent.

EVALUATION
Can Iris help users accomplish data science tasks? What ben-
efits and drawbacks does a conversational interface provide
over programming? We ran a study to validate Iris’s design,

Figure 5: Conversations with Iris are programs under composition: (A)
user conversation with Iris, (B) the abstract syntax tree that Iris builds
at run-time, and (C) Python code generated by Iris from the AST.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 473 Page 8

http://github.com/Ejhfast/iris-agent
http://github.com/Ejhfast/iris-agent

and compare it to the high-level data mining API provided by
the Python package sklearn. Following the study, we asked
participants about their impressions of the system.
Method
Our study aims to compare Iris to how a data scientist would
accomplish a predictive modeling task in Python. Study
participants built and cross-validated a model to predict a
flower’s species based on measurements of the length and
width of its petals and sepals [3], then reported on feature
relationships by examining model coefficients. The task de-
scription was written by a third party expert who was not
familiar with the training examples for Iris commands. We
asked participants to complete the task as quickly as possible
and measured the time it took them to complete the task as
well as the correctness of their final output. Finally, we con-
ducted semi-structured interviews, asking participants what
they liked and disliked about Iris, and following up on any
problems we noticed as they completed the study. These in-
terviews lasted about ten minutes.
Experimental design: Participants completed the task using
both sklearn (in a Jupyter notebook) and the Iris conversa-
tional interface, in random order to counterbalance learning
effects. We chose to compare to sklearn due to the one-to-one
correspondence between the commands in each tool (many
Iris commands are built on sklearn).
Participants: eight people participated in the study. All were
trained computer scientists with past experience in data sci-
ence and sklearn, and none had used Iris prior to the study.
Data format: In the sklearn condition, we presented the flow-
er data as a dictionary (with column names such as “sepal-
length” as the keys). In the Iris condition, we presented these
data as a dataframe (indexed on the same column names).
Participants did not need to manipulate the data in either con-
dition, besides selecting features to input to a model.
User instruction: In the sklearn condition, we provided a
high-level explanation of how the library works, and URLs
for all the sklearn methods that a participant would need to
complete the task. We also answered any questions about
sklearn in the course of the task. In the Iris condition, we
explained how the interface worked, but we did not provide
details about the commands that the participant would need,
or answer questions about the purpose of Iris commands.
Results
Participants completed the task 2.6 times faster on average
in the Iris condition (Figure 6). This effect was statistically
significant under a Mann-Whitney U test (U8=3.0, p<0.01).
There was a small learning effect (participants were 1.31
times faster on average for the second interface), re-empha-
sizing the importance of our randomization, but the effect
was not significant (U8=26, p=0.28). All participants com-
pleted the task correctly in both conditions.
Participants approached the modeling task in different ways.
Some participants worked backwards from a high level goal
that was several steps in the future. For example, P1 asked
Iris to “cross-validate” before they had created a model or
selected features. When Iris then asked, “what model do you
want to use?”, P1 created it on demand though a nested con-

Figure 6: Study participants completed a data science task 2.6 times
faster on average with Iris than with sklearn and Jupyter (p < 0.01).
The y-axis describes time in seconds.

versation (made possible by composition). Other participants
worked more incrementally. For example, P4 first selected
features from the flower data and saved them in named vari-
ables, then referenced those variable names in conversation
when creating a logistic regression model (made possible
by sequencing). Most participants took a middle ground
approach that leveraged both kinds of combination: for ex-
ample, composing model creation and data selection, then
sequencing that with a new request for cross-validation.
Participants also differed in the vocabulary they used to in-
teract with Iris. For example, P1 asked Iris for a “logistic
regression”, while P3 asked to “build a classifier”, and P2
asked to “select columns” while P5 asked to “select fea-
tures”. Sometimes users reformulated a request when noth-
ing appropriate appeared in the hint box, as occurred when
one participant attempted to access a column of data using
the ’.’ notation common to Python objects.
While three participants interacted with Iris almost entire-
ly through full natural language queries, most interacted via
keywords, as if they were querying a search engine (for ex-
ample, typing “logistic regression” to trigger create a clas-
sification model). When asked why they chose to converse
this way, participants said it was faster, as the hint box indi-
cated when keywords would trigger the correct command.
Notably, keyword searches still allowed participants to build
complex commands through composition and sequencing. In
contrast, participants who interacted with Iris through full
language queries (for example, “cross-validate model1 with
accuracy and 10 folds”) reported that they wanted Iris to ex-
tract a command’s arguments automatically.
Advantages to Conversation
In interviews following the study, participants mentioned as-
pects of Iris that they liked and disliked. These aspects varied
to some degree with a user’s level of experience with sk-
learn. For example, less experienced users of sklearn found
value in the structural guidance provided by conversation
with Iris (for example, how APIs fit together). P1 said:

“It took a while to remember how to thread together the com-
ponents of the sklearn API. Like, first you need to initiate a
model instance, then pass that to the cross-validation func-
tion—it wasn’t totally obvious. But with Iris, once it knew I
wanted to cross-validate, it walked me backwards though the
steps, like giving it a model, what type of model, and so on.”

In contrast, more experienced users thought Iris would save
time as a wrapper for a set of functions they frequently call
in smaller scripts. For example, P4 said:

“For simple scripts, this is so much faster... I really like that
you don’t have to remember the name of the function you

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 473 Page 9

want to call. All you need to do is say something close, like
‘rename column’ and it can figure out the rest.”

Other participants commented on the complexity of what the
system could accomplish. For example, P3 said:

“It’s so cool that Iris can do such complex stuff, when legit
companies out there have nothing this sophisticated.”

Four participants expressed interest in using Iris for future
data science work. One participant offered to connect us with
a colleague in the Psychology department who was teaching
an introductory statistics class as applied through R. “Iris
would be so much better,” P4 said.
Challenges for Conversation
We also asked participants what they found challenging
about Iris’s conversational interface. One common view was
that the expressivity of Iris presented more opportunities for
mistakes. For example, P2 said:

“It’s great that Iris can combine anything together, but that
creates more opportunities for something to go wrong.”

Iris’s conversational type system can prevent many common
user errors, such as combining commands that return incom-
patible types, providing guardrails on user data entry that en-
courage exploration and experimentation [31]. However, as
the complexity of conversations increased, we noticed that
participants occasionally got lost when dealing with many
layers of sub-conversations. Visual cues such as tab indenda-
tion might help add clarity to these interactions.
Similarly, other kinds of mistakes can emerge from miscom-
munication between a system and user about what the sys-
tem is actually doing. Along these lines, some participants
expressed the concern that a natural language based system
should be transparent about the operations it is executing,
especially for data science work. P5 said:

“Say I have some data that’s not normally distributed, and I
ask Iris to do a t-test. How do I know it’s doing the right one?”

While Iris repeats back the commands it is executing, this
is not always enough to give users a clear sense of what
is happening. In response, we have added a feature to Iris
that allows users to inspect a command’s underlying Python
code. Iris code is largely written using high level APIs such
as scikit, so it is possible to quickly inspect the constituent
functions and determine what methods are being executed.
Other participants mentioned the vocabulary problem as a
potential challenge. For example, P4 said:

“Everything worked for me, but I can imagine another user
entering the wrong words and getting stuck.”

The vocabulary problem has long been an issue for systems
based on natural language. As Iris gains more users and lan-
guage data, we aim to address this problem more formally
by learning from logs of mistakes [16]. In the course of the
pilot study, three participants entered requests that triggered
the wrong command. For example, “make model” triggered
“create a regression model” instead of “create a classifica-
tion model”; and for two participants, entering the name of a
column did not resolve to a command to extract that column
from a dataframe. While these mistakes were foreshadowed

by text in the system’s hint box, users ignored or misinter-
preted these hints, and future versions of the Iris might em-
phasize them further.
Finally, several participants suggested that text is not always
the best medium for communicating. For example, P2 said:

“There are certain things, like selecting data columns, that I’d
prefer to do by clicking on things.”

Prior work has demonstrated strong results with mixed mo-
dality interfaces [24]. Such feedback drove our decision to
include a spreadsheet view of dataframes in Iris, and we plan
to incorporate other modalities in the future. Manipulating
and transforming data, for example, can often be enhanced
by interactive visualizations, and we plan to explore how
such visual feedback might augment user conversation.

LIMITATIONS AND FUTURE WORK
Here we discuss challenges to overcome as Iris’s user base
and range of functionalities grow.
First, as Iris expands to support many more commands, in-
terpreting user language may become more difficult. The
system currently supports 95 atomic commands with a man-
ually authored dataset of examples (roughly 5 examples per
command). How accurate will command classification be-
come as the set of commands grows larger? How many user
examples are necessary to support a new command among
a library of thousands of others? Addressing these concerns
will become more important as we deploy Iris in the wild.
Second, Iris creates AST representations of conversations
with users and so has the ability to save these recorded pro-
grams, which may combine multiple commands. This ability
connects with work in programming by demonstration [27],
and offers the potential for users to create complex, reusable
workflows through natural language. Saving ASTs for reuse
presents a usability challenge, however. For example, how
should Iris ask a user which parameters in the AST are ar-
guments, and which should be captured as constants? And
is it be possible to mine useful higher-level commands by
analyzing the ASTs of hundreds or thousands of users? We
aim to explore these questions as Iris grows.
Finally, Iris enables exploratory and interactive data analy-
ses, as you might conduct today in R or a Jupyter notebook.
This is distinct from other data science work that requires
enormous datasets, where training a model may take hours,
days, or even weeks. To run these models, researchers typi-
cally setup and debug long-running pipelines of commands,
which is not something Iris is currently designed to do. As
Iris expands to allow users to create and save workflows
though PBD, such pipelines may be more feasible to run.

CONCLUSION
In this paper, we show how conversational agents can draw
on human conversational strategies to combine commands
together, allowing them to assist us with tasks they have not
been explicitly programmed to support. We showcase these
ideas in Iris, an agent designed to help users with data sci-
ence and machine learning tasks. More broadly, our work
demonstrates how simple models of conversation can lead to
surprisingly complex emergent outcomes.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 473 Page 10

REFERENCES
1. Adar, E., Dontcheva, M. and Laput, G. Command-

Space: modeling the relationships between tasks,
descriptions and features. In Proceedings of the 27th
annual ACM symposium on User interface software
and technology, ACM, 2014.

2. Allen, J., Chambers, N., Ferguson, G., Galescu, L.,
Jung, H., Swift, M. and Taysom, W. Plow: A collabora-
tive task learning agent. 2007.

3. Anderson, E. The species problem in Iris. In Annals of
the Missouri Botanical Garden, 1936.

4. Berant, J., Chou, A., Frostig, R. and Liang, P., Semantic
Parsing on Freebase from Question-Answer Pairs. In
EMNLP, 2013.

5. Bohus, D. and Rudnicky, A. The RavenClaw dialog
management framework: Architecture and systems. In
Computer Speech & Language, 2009.

6. Cranshaw, J., Elwany, E., Newman, T., Kocielnik, R.,
Yu, B., Soni, S., Teevan, J. and Monroy-Hernández, A.
Calendar. help: Designing a Workflow-Based Schedul-
ing Agent with Humans in the Loop. In CHI, 2017.

7. Fast, E., McGrath, W., Rajpurkar, P. and Bernstein, M.
Augur: Mining Human Behaviors from Fiction to Pow-
er Interactive Systems. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems,
ACM, 2016.

8. Fast, E., Steffee, D., Wang, L., Brandt, J. and Bernstein,
M. Emergent, crowd-scale programming practice in the
IDE. In Proceedings of the 32nd annual ACM confer-
ence on Human factors in computing systems, ACM,
2014.

9. Fast, E., Chen, B. and Bernstein, M. Empath: Under-
standing topic signals in large-scale text. In Proceed-
ings of the 2016 CHI Conference on Human Factors in
Computing Systems, ACM, 2016.

10. Fast, E. and Horvitz, E., Identifying dogmatism in
social media: Signals and models, In EMNLP, 2016.

11. Fast, E. and Bernstein, M. Meta: Enabling Program-
ming Languages to Learn from the Crowd, In Proceed-
ings of the 29th Annual Symposium on User Interface
Software and Technology, ACM, 2016.

12. Fourney, A., Mann, R. and Terry, M. Query-feature
graphs: bridging user vocabulary and system function-
ality, In Proceedings of the 24th annual ACM sympo-
sium on User interface software and technology, ACM,
2011.

13. Gao, T., Dontcheva, M., Adar, E., Liu, Z. and Karahali-
os, K. Datatone: Managing ambiguity in natural lan-
guage interfaces for data visualization. In Proceedings
of the 28th Annual ACM Symposium on User Interface
Software & Technology, ACM, 2015.

14. Gee, J. An introduction to discourse analysis: Theory
and method. Routledge, 2014.

15. Guo, P. and Seltzer, M. BURRITO: Wrapping Your Lab
Notebook in Computational Infrastructure. In TaPP,
2012.

16. Hartmann, B., MacDougall, D., Brandt, J. and Klem-
mer, S. What would other programmers do: suggesting
solutions to error messages. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, ACM, 2010.

17. Hauswald, J., Laurenzano, M., Zhang, Y., Li, C.,
Rovinski, A., Khurana, A., Dreslinski, R., Mudge, T.,
Petrucci, V., Tang, L. and Mars, J. Sirius: An Open
End-to-End Voice and Vision Personal Assistant and Its
Implications for Future Warehouse Scale Computers, In
Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), ACM, New York,
NY, USA, 2015.

18. Hutchby, I. and Wooffitt, R. Conversation analysis.
Polity, 2008.

19. John, R., Potti, N. and Patel, J. Ava: From Data to In-
sights Through Conversations. In CIDR, 2017.

20. Kandel, S., Paepcke, A., Hellerstein, J. and Heer,
J. Wrangler: Interactive visual specification of data
transformation scripts. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
ACM, 2011.

21. Kandel, S., Paepcke, A., Hellerstein, J. and Heer, J.
Enterprise data analysis and visualization: An interview
study. In IEEE Transactions on Visualization and Com-
puter Graphics, 2012.

22. Kery, M., Horvath, A. and Myers, B. Variolite: Sup-
porting Exploratory Programming by Data Scientists.
In CHI, 2017.

23. Klemmer, S., Sinha, A., Chen, J., Landay, J., Aboobak-
er, N. and Wang, A. Suede: A Wizard of Oz Prototyping
Tool for Speech User Interfaces. In Proceedings of
the 13th Annual ACM Symposium on User Interface
Software and Technology, ACM, New York, NY, USA,
2000.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 473 Page 11

24. Laput, G., Dontcheva, M., Wilensky, G., Chang, W.,
Agarwala, A., Linder, J. and Adar, E. Pixeltone: A mul-
timodal interface for image editing. In Proceedings of
the SIGCHI Conference on Human Factors in Comput-
ing Systems, ACM, 2013.

25. Lasecki, W., Wesley, R., Nichols, J., Kulkarni, A.,
Allen, J. and Bigham, J. Chorus: a crowd-powered
conversational assistant. In Proceedings of the 26th an-
nual ACM symposium on User interface software and
technology, ACM, 2013.

26. Lasecki, W., Thiha, P., Zhong, Y., Brady, E. and
Bigham, J. Answering visual questions with conver-
sational crowd assistants. In Proceedings of the 15th
International ACM SIGACCESS Conference on Com-
puters and Accessibility, ACM, 2013.

27. Li, T., Azaria, A. and Myers, B. SUGILITE: Creating
Multimodal Smartphone Automation by Demonstra-
tion. In CHI’17, 2017.

28. Little, G. and Miller, R. Keyword programming in
Java. In Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engi-
neering, ACM, 2007.

29. Lupkowski, P. and Ginzburg, J. A corpus-based taxono-
my of question responses. In IWCS 2013 (International
Workshop on Computational Semantics), 2013.

30. Maes, P. Agents that reduce work and information over-
load. In CACM, 1994.

31. Maloney, J., Resnick, M., Rusk, N., Silverman, B. and
Eastmond, E. The Scratch Programming Language and
Environment. In Trans. Comput. Educ., 2010.

32. Nass, C. and Brave, S., Wired for speech: How voice
activates and advances the human-computer relation-
ship, MIT press Cambridge, MA, 2005.

33. Ng, V. Supervised noun phrase coreference research:
The first fifteen years. In Proceedings of the 48th
annual meeting of the association for computational
linguistics, Association for Computational Linguistics,
2010.

34. Patel, K., Bancroft, N., Drucker, S., Fogarty, J., Ko, A.
and Landay, J. Gestalt: integrated support for imple-
mentation and analysis in machine learning. In Pro-
ceedings of the 23nd annual ACM symposium on User
interface software and technology, ACM, 2010.

35. Pennebaker, J., Francis, M. and Booth, R. Linguistic in-
quiry and word count: LIWC 2001. Mahway: Lawrence
Erlbaum Associates, 2001.

36. Porcheron, M., Fischer, J. and Sharples, S. “Do animals
have accents?”: talking with agents in multi-party con-
versation. In CHI, 2016.

37. Reinhart, T. The syntactic domain of anaphora. Massa-
chusetts Institute of Technology, 1976.

38. Rong, X., Yan, S., Oney, S., Dontcheva, M. and Adar,
E. CodeMend: Assisting Interactive Programming with
Bimodal Embedding. In Proceedings of the 29th Annu-
al Symposium on User Interface Software and Technol-
ogy, ACM, 2016.

39. Searle, J. Speech acts: An essay in the philosophy of
language. Cambridge university press, 1969.

40. Serban, I., Sordoni, A., Bengio, Y., Courville, A. and
Pineau, J. Building end-to-end dialogue systems using
generative hierarchical neural network models. In arXiv
preprint arXiv:1507.04808, 2015.

41. Setlur, V., Battersby, S., Tory, M., Gossweiler, R. and
Chang, A. Eviza: A Natural Language Interface for
Visual Analysis. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technolo-
gy, ACM, 2016.

42. Suhm, B., Myers, B. and Waibel, A. Multimodal error
correction for speech user interfaces. In ACM transac-
tions on computer-human interaction (TOCHI), 2001.

43. Sun, M., Chen, Y. and Rudnicky, A. An intelligent
assistant for high-level task understanding. In Proceed-
ings of the 21st International Conference on Intelligent
User Interfaces, ACM, 2016.

44. Talbot, J., Lee, B., Kapoor, A. and Tan, D. EnsembleM-
atrix: Interactive Visualization to Support Machine
Learning with Multiple Classifiers. In Proceedings of
the SIGCHI Conference on Human Factors in Comput-
ing Systems, ACM, New York, NY, USA, 2009.

45. Wang, S., Liang, P. and Manning, C. Learning Lan-
guage Games through Interaction. In CoRR, 2016.

46. Weizenbaum, J. ELIZA—a computer program for the
study of natural language communication between man
and machine. In Communications of the ACM, 1966.

47. Winograd, T. and Flores, F. Understanding computers
and cognition: A new foundation for design. Intellect
Books, 1986.

48. Winograd, T. A language/action perspective on the
design of cooperative work. In Human–Computer
Interaction, 1987.

49. Xu, G. and Lam, M. Almond: The Architecture of an
Open, Crowdsourced, Privacy-Preserving, Programma-
ble Virtual Assistant. 2017.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 473 Page 12

